IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/7933.html
   My bibliography  Save this paper

Estimation and inference for actual and counterfactual growth incidence curves

Author

Listed:
  • Ferreira,Francisco H. G.
  • Firpo,Sergio
  • Galvao,Antonio F.

Abstract

Different episodes of economic growth display widely varying distributional characteristics, both across countries and over time. Growth is sometimes accompanied by rising and sometimes by falling inequality. Applied economists have come to rely on the Growth Incidence Curve, which gives the quantile-specific rate of income growth over a certain period, to describe and analyze the incidence of economic growth. This paper discusses the identification conditions, and develops estimation and inference procedures for both actual and counterfactual growth incidence curves, based on general functions of the quantile potential outcome process over the space of quantiles. The paper establishes the limiting null distribution of the test statistics of interest for those general functions, and proposes resampling methods to implement inference in practice. The proposed methods are illustrated by a comparison of the growth processes in the United States and Brazil during 1995-2007. Although growth in the average real wage was disappointing in both countries, the distribution of that growth was markedly different. In the United States, wage growth was mediocre for the bottom 80 percent of the sample, but much more rapid for the top 20 percent. In Brazil, conversely, wage growth was rapid below the median, and negative at the top. As a result, inequality rose in the United States and fell markedly in Brazil.

Suggested Citation

  • Ferreira,Francisco H. G. & Firpo,Sergio & Galvao,Antonio F., 2017. "Estimation and inference for actual and counterfactual growth incidence curves," Policy Research Working Paper Series 7933, The World Bank.
  • Handle: RePEc:wbk:wbrwps:7933
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/953201483623365115/pdf/WPS7933.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    2. Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," CEIS Research Paper 300, Tor Vergata University, CEIS, revised 17 Dec 2013.
    3. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    4. B. Essama-Nssah & Saumik Paul & Léandre Bassolé, 2013. "Accounting for Heterogeneity in Growth Incidence in Cameroon Using Recentered Influence Function Regression," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 22(5), pages 757-795, November.
    5. Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(3), pages 931-951, June.
    6. Francois Bourguignon & Francisco H.G. Ferreira & Nora Lustig, 2005. "The Microeconomics of Income Distribution Dynamics in East Asia and Latin America," World Bank Publications, The World Bank, number 14844, June.
    7. Sergio Firpo & Cristine Pinto, 2016. "Identification and Estimation of Distributional Impacts of Interventions Using Changes in Inequality Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 457-486, April.
    8. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    9. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    10. Wojciech Kopczuk & Emmanuel Saez & Jae Song, 2010. "Earnings Inequality and Mobility in the United States: Evidence from Social Security Data Since 1937," The Quarterly Journal of Economics, Oxford University Press, vol. 125(1), pages 91-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Estimation and Inference for Actual and Counterfactual Growth Incidence Curves
      by maximorossi in NEP-LTV blog on 2017-03-22 00:55:01

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    2. Kim, Ju Hyun & Park, Byoung G., 2018. "Weak convergence of local quantile treatment effect processes," Economics Letters, Elsevier, vol. 162(C), pages 49-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejo, Javier & Galvao, Antonio F. & Montes-Rojas, Gabriel, 2018. "Quantile continuous treatment effects," Econometrics and Statistics, Elsevier, vol. 8(C), pages 13-36.
    2. Kaspar Wüthrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
    3. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    4. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1010-1043, August.
    5. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    6. Bargain, Olivier & Melly, Blaise, 2008. "Public Sector Pay Gap in France: New Evidence Using Panel Data," IZA Discussion Papers 3427, Institute of Labor Economics (IZA).
    7. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    8. Santiago Pereda Fernández, 2019. "Identification and estimation of triangular models with a binary treatment," Temi di discussione (Economic working papers) 1210, Bank of Italy, Economic Research and International Relations Area.
    9. Chalak, Karim, 2019. "A note on the robustness of quantile treatment effect estimands," Economics Letters, Elsevier, vol. 185(C).
    10. Lee, Jinhyun, 2013. "Sharp Bounds on Heterogeneous Individual Treatment Responses," SIRE Discussion Papers 2013-89, Scottish Institute for Research in Economics (SIRE).
    11. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    12. Ron Diris, 2017. "Don't Hold Back? The Effect of Grade Retention on Student Achievement," Education Finance and Policy, MIT Press, vol. 12(3), pages 312-341, Summer.
    13. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    14. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    15. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    16. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    17. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    18. Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Papers 1910.04245, arXiv.org.
    19. Gracious M. Diiro & Abdoul G. Sam & David Kraybill, 2017. "Heterogeneous Effects of Maternal Labor Market Participation on the Nutritional Status of Children: Empirical Evidence from Rural India," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 609-632, September.
    20. Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 123-128, August.

    More about this item

    Keywords

    Inequality; Equity and Development; Achieving Shared Growth; Pro-Poor Growth;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:7933. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Roula I. Yazigi). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.