IDEAS home Printed from https://ideas.repec.org/h/pal/dofeco/v4year2010doi3825.html
   My bibliography  Save this book chapter

multi-valued treatment effects

Author

Listed:
  • Matias D. Cattaneo

Abstract

The term multi-valued treatment effects refers to a collection of population parameters capturing the impact of a treatment variable on an outcome variable when the treatment takes multiple values. For example, in labour training programmes participants receive different hours of training or in anti-poverty programmes households receive different levels of transfers. Multi-valued treatments may be finite or infinite as well as ordinal or cardinal, and naturally extend the idea of binary treatment effects, leading to a large collection of treatment effects of interest in applications. The analysis of multi-valued treatment effects has several distinct features when compared to the analysis of binary treatment effects, including: (i) a comparison or control group is not always clearly defined, (ii) new parameters of interest arise that capture distinct phenomena such as nonlinearities or tipping points, (iii) correct statistical inference requires the joint estimation of all treatment effects (as opposed to the estimation of each treatment effect separately) in general, and (iv) efficiency gains in statistical inference may be obtained by exploiting known restrictions among the multi-valued treatment effects.

Suggested Citation

  • Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics, Palgrave Macmillan.
  • Handle: RePEc:pal:dofeco:v:4:year:2010:doi:3825
    as

    Download full text from publisher

    File URL: http://www.dictionaryofeconomics.com/article?id=pde2010_M000247
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flores, Carlos A. & Mitnik, Oscar A., 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," IZA Discussion Papers 4451, Institute for the Study of Labor (IZA).
    2. Carlos A. Flores & Oscar A. Mitnik, 2013. "Comparing Treatments across Labor Markets: An Assessment of Nonexperimental Multiple-Treatment Strategies," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1691-1707, December.
    3. Carlos A. Flores & Alfonso Flores-Lagunes & Arturo Gonzalez & Todd C. Neumann, 2009. "Estimating the Effects of Lenght of Exposure to Traning Program: The Case of Job Corps," Working Papers 2010-3, University of Miami, Department of Economics.
    4. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.

    More about this item

    Keywords

    causal inference; generalised propensity score; identification; matching estimators; program evaluation; semiparametric estimation; semiparametric efficiency; treatment effects; unconfoundedness;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:dofeco:v:4:year:2010:doi:3825. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sheeja Sanoj) or (Rebekah McClure). General contact details of provider: http://www.palgrave-journals.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.