IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Efficient propensity score regression estimators of multi-valued treatment effects for the treated

Listed author(s):
  • Ying-Ying Lee

We study the role of the propensity scores in estimating treatment effects for the treated with a multi-valued treatment. Assume assignment to one of the multiple treatments is random given observed characteristics. Valid causal comparisons for the subpopulation who has been treated a particular treatment level are based on two propensity scores - one for the treatment level and one for the counterfactual level. In contrast to the binary treatment case, these two propensity scores do not add up to one. This is the key feature that allows us to distinguish different roles of the propensity scores and to provide new insight in well-known paradoxes in the binary treatment effect and missing data literature. We formally show that knowledge of the propensity score for the treated level decreases the semiparametric efficiency bound, regardless of knowledge of the propensity score for the counterfactual level. We propose efficient kernel regression estimators that project on a nonparametrically estimated propensity score for the counterfactual level and the true propensity score for the treated level. A surprising result is implied for the binary treatment effect for the treated: when the propensity scores are known, using one estimated propensity score is not efficient. Our efficient estimator regresses on a normalized propensity score that utilizes the information contained in the nonparametrically estimated and the true propensity scores.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.economics.ox.ac.uk/materials/papers/13697/paper738.pdf
Download Restriction: no

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 738.

as
in new window

Length:
Date of creation: 09 Jan 2015
Handle: RePEc:oxf:wpaper:738
Contact details of provider: Postal:
Manor Rd. Building, Oxford, OX1 3UQ

Web page: https://www.economics.ox.ac.uk/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(05), pages 1140-1177, October.
  2. Michael Lechner, 2002. "Program Heterogeneity And Propensity Score Matching: An Application To The Evaluation Of Active Labor Market Policies," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 205-220, May.
  3. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
  4. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
  5. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
  6. Bryan S. Graham, 2011. "Efficiency Bounds for Missing Data Models With Semiparametric Restrictions," Econometrica, Econometric Society, vol. 79(2), pages 437-452, March.
  7. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, 07.
  8. Busso, Matias & DiNardo, John & McCrary, Justin, 2009. "New Evidence on the Finite Sample Properties of Propensity Score Matching and Reweighting Estimators," IZA Discussion Papers 3998, Institute for the Study of Labor (IZA).
  9. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
  10. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
  11. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics,in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097 Elsevier.
  12. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
  13. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
  14. Sergio Firpo & Cristine Pinto, 2016. "Identification and Estimation of Distributional Impacts of Interventions Using Changes in Inequality Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 457-486, April.
  15. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
  16. Bhattacharya, Debopam, 2007. "Inference on inequality from household survey data," Journal of Econometrics, Elsevier, vol. 137(2), pages 674-707, April.
  17. Stephen G. Donald & Yu‐Chin Hsu & Garry F. Barrett, 2012. "Incorporating covariates in the measurement of welfare and inequality: methods and applications," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 1-30, February.
  18. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
  19. Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
  20. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
  21. Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:738. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Pouliquen)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.