IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v95y2013i5p1691-1707.html
   My bibliography  Save this article

Comparing Treatments across Labor Markets: An Assessment of Nonexperimental Multiple-Treatment Strategies

Author

Listed:
  • Carlos A. Flores

    (California Polytechnic State University at San Luis Obispo)

  • Oscar A. Mitnik

    (Federal Deposit Insurance Corporation and IZA)

Abstract

We study the effectiveness of nonexperimental strategies in adjusting for comparison group differences when using data from several programs, each implemented at a different location, to compare their effect if implemented at alternative locations. First, we adjust for individual characteristics differences simultaneously across all groups using unconfoundedness-based and conditional difference-in-difference methods for multiple treatments. Second, we adjust for differences in local economic conditions and stress their role after program participation. Our results show that it is critical to have sufficient overlap across locations in both dimensions and illustrate the difficulty of adjusting for local economic conditions that differ greatly across locations. © 2013 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.

Suggested Citation

  • Carlos A. Flores & Oscar A. Mitnik, 2013. "Comparing Treatments across Labor Markets: An Assessment of Nonexperimental Multiple-Treatment Strategies," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1691-1707, December.
  • Handle: RePEc:tpr:restat:v:95:y:2013:i:5:p:1691-1707
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00373
    File Function: link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael Lechner, 2002. "Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 59-82.
    2. Michael Lechner, 2002. "Program Heterogeneity And Propensity Score Matching: An Application To The Evaluation Of Active Labor Market Policies," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 205-220, May.
    3. Markus Frölich & Almas Heshmati & Michael Lechner, 2004. "A microeconometric evaluation of rehabilitation of long-term sickness in Sweden," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(3), pages 375-396.
    4. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    5. Markus Fr–lich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    6. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    7. Andrew Dyke & Carolyn J. Heinrich & Peter R. Mueser & Kenneth R. Troske & Kyung-Seong Jeon, 2006. "The Effects of Welfare-to-Work Program Activities on Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 567-608, July.
    8. Alfonso Flores-Lagunes & Arturo Gonzalez & Todd Neumann, 2010. "Learning But Not Earning? The Impact Of Job Corps Training On Hispanic Youth," Economic Inquiry, Western Economic Association International, vol. 48(3), pages 651-667, July.
    9. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    10. David Greenberg & Philip K. Robins, 2011. "Have Welfare-to-Work Programs Improved over Time in Putting Welfare Recipients to Work?," ILR Review, Cornell University, ILR School, vol. 64(5), pages 910-920, October.
    11. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    12. Miana Plesca & Jeffrey Smith, 2007. "Evaluating multi-treatment programs: theory and evidence from the U.S. Job Training Partnership Act experiment," Empirical Economics, Springer, vol. 32(2), pages 491-528, May.
    13. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    14. Friedlander, Daniel & Robins, Philip K, 1995. "Evaluating Program Evaluations: New Evidence on Commonly Used Nonexperimental Methods," American Economic Review, American Economic Association, vol. 85(4), pages 923-937, September.
    15. Guido W. Imbens, 1999. "The Role of the Propensity Score in Estimating Dose-Response Functions," NBER Technical Working Papers 0237, National Bureau of Economic Research, Inc.
    16. McCrary, Justin, 2008. "Manipulation of the running variable in the regression discontinuity design: A density test," Journal of Econometrics, Elsevier, vol. 142(2), pages 698-714, February.
    17. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    18. Busso, Matias & DiNardo, John & McCrary, Justin, 2009. "New Evidence on the Finite Sample Properties of Propensity Score Matching and Reweighting Estimators," IZA Discussion Papers 3998, Institute for the Study of Labor (IZA).
    19. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    20. V. Joseph Hotz & Guido W. Imbens & Julie H. Mortimer, 1999. "Predicting the Efficacy of Future Training Programs Using Past Experiences," NBER Technical Working Papers 0238, National Bureau of Economic Research, Inc.
    21. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    22. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 1053-1079.
    23. James Heckman & Neil Hohmann & Jeffrey Smith & Michael Khoo, 2000. "Substitution and Dropout Bias in Social Experiments: A Study of an Influential Social Experiment," The Quarterly Journal of Economics, Oxford University Press, vol. 115(2), pages 651-694.
    24. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    25. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(02), pages 1-21, June.
    26. David G. Blanchflower & Richard B. Freeman, 2000. "Youth Employment and Joblessness in Advanced Countries," NBER Books, National Bureau of Economic Research, Inc, number blan00-1.
    27. Dehejia, Rajeev H, 2003. "Was There a Riverside Miracle? A Hierarchical Framework for Evaluating Programs with Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 1-11, January.
    28. Charles Michalopoulos & Howard S. Bloom & Carolyn J. Hill, 2004. "Can Propensity-Score Methods Match the Findings from a Random Assignment Evaluation of Mandatory Welfare-to-Work Programs?," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 156-179, February.
    29. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    30. Dolton, Peter & Smith, Jeffrey A., 2011. "The Impact of the UK New Deal for Lone Parents on Benefit Receipt," IZA Discussion Papers 5491, Institute for the Study of Labor (IZA).
    31. Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics, Palgrave Macmillan.
    32. Wang-Sheng Lee, 2013. "Propensity score matching and variations on the balancing test," Empirical Economics, Springer, vol. 44(1), pages 47-80, February.
    33. Joseph Hotz, V. & Imbens, Guido W. & Mortimer, Julie H., 2005. "Predicting the efficacy of future training programs using past experiences at other locations," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 241-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marisa Coetzee, 2013. "Finding the Benefits: Estimating the Impact of The South African Child Support Grant," South African Journal of Economics, Economic Society of South Africa, vol. 81(3), pages 427-450, September.
    2. Bogaard, Hein & Svejnar, Jan, 2013. "Incentive Pay and Performance: Insider Econometrics in a Multi-Unit Firm," IZA Discussion Papers 7800, Institute for the Study of Labor (IZA).
    3. Chung Choe & Alfonso Flores-Lagunes & Sang-Jun Lee, 2015. "Do dropouts with longer training exposure benefit from training programs? Korean evidence employing methods for continuous treatments," Empirical Economics, Springer, vol. 48(2), pages 849-881, March.
    4. repec:eee:jfpoli:v:69:y:2017:i:c:p:97-109 is not listed on IDEAS
    5. Das, Ashis & Friedman, Jed & Kandpal, Eeshani, 2014. "Does involvement of local NGOs enhance public service delivery ? cautionary evidence from a Malaria-prevention evaluation in India," Policy Research Working Paper Series 6931, The World Bank.

    More about this item

    Keywords

    multiple treatments; nonexperimental estimators; generalized propensity score; local economic conditions;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • I38 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Government Programs; Provision and Effects of Welfare Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:95:y:2013:i:5:p:1691-1707. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kristin Waites). General contact details of provider: http://mitpress.mit.edu/journals/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.