IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp3998.html
   My bibliography  Save this paper

New Evidence on the Finite Sample Properties of Propensity Score Matching and Reweighting Estimators

Author

Listed:
  • Busso, Matias

    (Inter-American Development Bank)

  • DiNardo, John

    (University of Michigan)

  • McCrary, Justin

    (University of California, Berkeley)

Abstract

Currently available asymptotic results in the literature suggest that matching estimators have higher variance than reweighting estimators. The extant literature comparing the finite sample properties of matching to specific reweighting estimators, however, has concluded that reweighting performs far worse than even the simplest matching estimator. We resolve this puzzle. We show that the findings from the finite sample analyses are not inconsistent with asymptotic analysis, but are very specific to particular choices regarding the implementation of reweighting, and fail to generalize to settings likely to be encountered in actual empirical practice. In the DGPs studied here, reweighting typically outperforms propensity score matching.

Suggested Citation

  • Busso, Matias & DiNardo, John & McCrary, Justin, 2009. "New Evidence on the Finite Sample Properties of Propensity Score Matching and Reweighting Estimators," IZA Discussion Papers 3998, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp3998
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp3998.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John W. Budd & Brian P. McCall, 2001. "The Grocery Stores Wage Distribution: A Semi-Parametric Analysis of the Role of Retailing and Labor Market Institutions," ILR Review, Cornell University, ILR School, vol. 54(2A), pages 484-501, March.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    4. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    5. Bell, Brian D & Pitt, Michael K, 1998. "Trade Union Decline and the Distribution of Wages in the UK: Evidence from Kernel Density Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 60(4), pages 509-528, November.
    6. Brian D. Bell & Michael K. Pitt, 1998. "Trade Union Decline and the Distribution of Wages in the UK: Evidence from Kernel Density Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 60(4), pages 509-528, November.
    7. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    8. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    9. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    10. Martin Biewen, 2001. "Measuring the Effects of Socio-Economic Variables on the Income Distribution: An Application to the East German Transition Process," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 185-190, February.
    11. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    12. Justin McCrary, 2007. "The Effect of Court-Ordered Hiring Quotas on the Composition and Quality of Police," American Economic Review, American Economic Association, vol. 97(1), pages 318-353, March.
    13. Bell, Brian D & Pitt, Michael K, 1998. "Trade Union Decline and the Distribution of Wages in the UK: Evidence from Kernel Density Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 60(4), pages 509-528, November.
    14. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    15. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Draheim, Matthias & Schanbacher, Peter & Seiberlich, Ruben, 2021. "On the effectiveness of case management for people with disabilities," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 55, pages 1-15.
    3. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    4. Tymon Słoczyński, 2015. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
    5. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    6. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    7. Gevrek, Z. Eylem & Seiberlich, Ruben R., 2014. "Semiparametric decomposition of the gender achievement gap: An application for Turkey," Labour Economics, Elsevier, vol. 31(C), pages 27-44.
    8. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    9. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Generalized Kernel Ridge Regression for Nonparametric Structural Functions and Semiparametric Treatment Effects," Papers 2010.04855, arXiv.org, revised Dec 2021.
    10. Dragana Djurdjevic & Sergiy Radyakin, 2007. "Decomposition of the Gender Wage Gap Using Matching: An Application for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 143(IV), pages 365-396, December.
    11. Ham, John C. & Li, Xianghong & Reagan, Patricia B., 2011. "Matching and semi-parametric IV estimation, a distance-based measure of migration, and the wages of young men," Journal of Econometrics, Elsevier, vol. 161(2), pages 208-227, April.
    12. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    13. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    14. Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric Tests of Conditional Treatment Effects," Cowles Foundation Discussion Papers 1740, Cowles Foundation for Research in Economics, Yale University.
    15. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    16. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
    17. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    18. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    19. Timothy B. Armstrong & Michal Kolesár, 2021. "Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
    20. José I. Castillo-Manzano & Antonio Sánchez-Braza, 2011. "An Evaluation of the Establishment of a Taxi Flat Rate from City to Airport," Urban Studies, Urban Studies Journal Limited, vol. 48(9), pages 1909-1924, July.

    More about this item

    Keywords

    treatment effects; propensity score; semiparametric efficiency;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp3998. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.