IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand

  • Richard K. Crump
  • V. Joseph Hotz
  • Guido W. Imbens
  • Oscar A. Mitnik

Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used informal methods for trimming the sample. In this paper we develop a systematic approach to addressing such lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely, as well as optimally weighted average treatment effects. Under some conditions the optimal selection rules depend solely on the propensity score. For a wide range of distributions a good approximation to the optimal rule is provided by the simple selection rule to drop all units with estimated propensity scores outside the range [0.1,0.9].

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nber.org/papers/t0330.pdf
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Technical Working Papers with number 0330.

as
in new window

Length:
Date of creation: Oct 2006
Date of revision:
Handle: RePEc:nbr:nberte:0330
Note: TWP
Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Web page: http://www.nber.org
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-20, September.
  2. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-75, March.
  3. Crump, Richard K. & Hotz, V. Joseph & Imbens, Guido W. & Mitnik, Oscar A., 2006. "Nonparametric Tests for Treatment Effect Heterogeneity," IZA Discussion Papers 2091, Institute for the Study of Labor (IZA).
  4. Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
  5. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," Working Papers 0608, University of Miami, Department of Economics.
  6. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," NBER Working Papers 6699, National Bureau of Economic Research, Inc.
  7. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
  8. Michael Lechner, 2002. "Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 59-82.
  9. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, 01.
  10. Chen, Xiaohong & Hong, Han & Tarozzi, Alessandro, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Working Papers 42, Yale University, Department of Economics.
  11. Joshua D. Angrist, 1998. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants," Econometrica, Econometric Society, vol. 66(2), pages 249-288, March.
  12. Newey, W.K., 1992. "Kernel Estimation of Partial Means and a General Variance Estimator," Working papers 93-3, Massachusetts Institute of Technology (MIT), Department of Economics.
  13. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, 07.
  14. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-54, July.
  15. Michael Lechner, 2002. "Program Heterogeneity And Propensity Score Matching: An Application To The Evaluation Of Active Labor Market Policies," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 205-220, May.
  16. Guido W. Imbens & Whitney Newey & Geert Ridder, 2006. "Mean-squared-error Calculations for Average Treatment Effects," IEPR Working Papers 06.57, Institute of Economic Policy Research (IEPR).
  17. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
  18. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
  19. repec:cup:etheor:v:10:y:1994:i:2:p:233-53 is not listed on IDEAS
  20. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
  21. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
  22. Heckman, James J & Ichimura, Hidehiko & Todd, Petra E, 1997. "Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Wiley Blackwell, vol. 64(4), pages 605-54, October.
  23. Heckman, James J & Ichimura, Hidehiko & Todd, Petra, 1998. "Matching as an Econometric Evaluation Estimator," Review of Economic Studies, Wiley Blackwell, vol. 65(2), pages 261-94, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0330. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.