IDEAS home Printed from https://ideas.repec.org/a/spr/portec/v1y2002i2d10.1007_s10258-002-0010-3.html
   My bibliography  Save this article

Alternative approaches to evaluation in empirical microeconomics

Author

Listed:
  • Richard Blundell

    () (University College London and Institute for Fiscal Studies 7)

  • Monica Costa Dias

    (University College London and Institute for Fiscal Studies 7)

Abstract

. Four alternative but related approaches to empirical evaluation of policy interventions are studied: social experiments, natural experiments, matching methods, and instrumental variables. In each case the necessary assumptions and the data requirements are considered for estimation of a number of key parameters of interest. These key parameters include the average treatment effect, the treatment on the treated and the local average treatment effect. Some issues of implementation and interpretation are discussed drawing on the labour market programme evaluation literature.

Suggested Citation

  • Richard Blundell & Monica Costa Dias, 2002. "Alternative approaches to evaluation in empirical microeconomics," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 91-115, August.
  • Handle: RePEc:spr:portec:v:1:y:2002:i:2:d:10.1007_s10258-002-0010-3
    DOI: 10.1007/s10258-002-0010-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10258-002-0010-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. Richard Blundell & Alan Duncan & Costas Meghir, 1998. "Estimating Labor Supply Responses Using Tax Reforms," Econometrica, Econometric Society, vol. 66(4), pages 827-862, July.
    3. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    4. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    5. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2002. "Removing the Veil of Ignorance in Assessing the Distributional Impacts of Social Policies," NBER Working Papers 8840, National Bureau of Economic Research, Inc.
    6. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    7. Blundell, Richard & Macurdy, Thomas, 1999. "Labor supply: A review of alternative approaches," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 27, pages 1559-1695, Elsevier.
    8. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," Review of Economic Studies, Oxford University Press, vol. 71(3), pages 655-679.
    9. Austan Goolsbee, 2000. "What Happens When You Tax the Rich? Evidence from Executive Compensation," Journal of Political Economy, University of Chicago Press, vol. 108(2), pages 352-378, April.
    10. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818728, December.
    11. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    12. Wilbert Van Der Klaauw, 2008. "Regression–Discontinuity Analysis: A Survey of Recent Developments in Economics," LABOUR, CEIS, vol. 22(2), pages 219-245, June.
    13. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2003. "Evaluating the impact of education on earnings in the UK: Models, methods and results from the NCDS," IFS Working Papers W03/20, Institute for Fiscal Studies.
    14. Robert Moffit, 2007. "Estimating Marginal Treatment Effects in Heterogeneous Populations," Economics Working Paper Archive 539, The Johns Hopkins University,Department of Economics.
    15. Nada Eissa & Jeffrey B. Liebman, 1996. "Labor Supply Response to the Earned Income Tax Credit," The Quarterly Journal of Economics, Oxford University Press, vol. 111(2), pages 605-637.
    16. Daniel R. Feenberg & James M. Poterba, 1993. "Income Inequality and the Incomes of Very High-Income Taxpayers: Evidence from Tax Returns," NBER Chapters, in: Tax Policy and the Economy, Volume 7, pages 145-177, National Bureau of Economic Research, Inc.
    17. Feldstein, Martin, 1995. "The Effect of Marginal Tax Rates on Taxable Income: A Panel Study of the 1986 Tax Reform Act," Journal of Political Economy, University of Chicago Press, vol. 103(3), pages 551-572, June.
    18. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524131, December.
    19. Battistin, Erich & Rettore, Enrico, 2008. "Ineligibles and eligible non-participants as a double comparison group in regression-discontinuity designs," Journal of Econometrics, Elsevier, vol. 142(2), pages 715-730, February.
    20. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    21. Hausman, Jerry A. & Wise, David A. (ed.), 1985. "Social Experimentation," National Bureau of Economic Research Books, University of Chicago Press, number 9780226319407.
    22. Bassi, Laurie J, 1984. "Estimating the Effect of Training Programs with Non-Random Selection," The Review of Economics and Statistics, MIT Press, vol. 66(1), pages 36-43, February.
    23. Lindsey, Lawrence B., 1987. "Individual taxpayer response to tax cuts: 1982-1984 : With implications for the revenue maximizing tax rate," Journal of Public Economics, Elsevier, vol. 33(2), pages 173-206, July.
    24. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    25. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2004. "Evaluating the Employment Impact of a Mandatory Job Search Program," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 569-606, June.
    26. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    27. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 33-58.
    28. Jerry A. Hausman & David A. Wise, 1985. "Social Experimentation," NBER Books, National Bureau of Economic Research, Inc, number haus85-1, October.
    29. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    30. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    31. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    32. Gary Burtless, 1985. "Are Targeted Wage Subsidies Harmful? Evidence from a Wage Voucher Experiment," ILR Review, Cornell University, ILR School, vol. 39(1), pages 105-114, October.
    33. Feldstein, Martin, 1995. "The Effect of Marginal Tax Rates on Taxable Income: A Panel Study of the 1986 Tax Reform Act," Journal of Political Economy, University of Chicago Press, vol. 103(3), pages 551-572, June.
    34. David Card & Lara D. Shore-Sheppard, 2004. "Using Discontinuous Eligibility Rules to Identify the Effects of the Federal Medicaid Expansions on Low-Income Children," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 752-766, August.
    35. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    36. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    37. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818742, December.
    38. Markus Frölich, 2006. "A Note on Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables," University of St. Gallen Department of Economics working paper series 2006 2006-11, Department of Economics, University of St. Gallen.
    39. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    40. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    41. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    42. Edwin Leuven & Barbara Sianesi, 2003. "PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing," Statistical Software Components S432001, Boston College Department of Economics, revised 01 Feb 2018.
    43. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524117, December.
    44. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2001. "Evaluating the employment impact of a mandatory job search assistance program," IFS Working Papers W01/20, Institute for Fiscal Studies.
    45. James Heckman & Edward Vytlacil, 1998. "Instrumental Variables Methods for the Correlated Random Coefficient Model: Estimating the Average Rate of Return to Schooling When the Return is Correlated with Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 33(4), pages 974-987.
    46. Richard Blundell & Monica Costa Dias, 2000. "Evaluation methods for non-experimental data," Fiscal Studies, Institute for Fiscal Studies, vol. 21(4), pages 427-468, January.
    47. Richard Blundell & James L. Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers CWP09/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    48. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    49. Barbara Sianesi, 2001. "Propensity score matching," United Kingdom Stata Users' Group Meetings 2001 12, Stata Users Group, revised 23 Aug 2001.
    50. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    51. Arulampalam, W. & Robin A. Naylor & Jeremy P. Smith, 2002. "University of Warwick," Royal Economic Society Annual Conference 2002 9, Royal Economic Society.
    52. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 497-517.
    53. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    54. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    55. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    56. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228, Elsevier.
    57. Jerry A. Hausman & David A. Wise, 1985. "Introduction to "Social Experimentation"," NBER Chapters, in: Social Experimentation, pages 1-10, National Bureau of Economic Research, Inc.
    58. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818735, December.
    59. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524124, December.
    60. James J. Heckman & Jeffrey A. Smith, 1999. "The Pre-Program Earnings Dip and the Determinants of Participation in a Social Program: Implications for Simple Program Evaluation Strategies," NBER Working Papers 6983, National Bureau of Economic Research, Inc.
    61. Alberto Abadie & Joshua D. Angrist & Guido W. Imbens, 1998. "Instrumental Variables Estimation of Quantile Treatment Effects," NBER Technical Working Papers 0229, National Bureau of Economic Research, Inc.
    62. Ten Have, Thomas R. & Elliott, Michael R. & Joffe, Marshall & Zanutto, Elaine & Datto, Catherine, 2004. "Causal Models for Randomized Physician Encouragement Trials in Treating Primary Care Depression," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 16-25, January.
    63. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    64. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    65. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    66. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2003. "Evaluating the impact of education on earnings in the UK: Models, methods and results from the NCDS," IFS Working Papers W03/20, Institute for Fiscal Studies.
    3. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    4. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    5. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    6. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    7. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    8. Christian Durán, 2004. "Evaluación microeconométrica de las políticas públicas de empleo: aspectos metodológicos," Hacienda Pública Española / Review of Public Economics, IEF, vol. 170(3), pages 107-133, september.
    9. Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Documentos de Trabajo CIEF 015810, Universidad EAFIT.
    10. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    11. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2001. "Evaluating the employment impact of a mandatory job search assistance program," IFS Working Papers W01/20, Institute for Fiscal Studies.
    12. Deborah A. Cobb‐Clark & Thomas Crossley, 2003. "Econometrics for Evaluations: An Introduction to Recent Developments," The Economic Record, The Economic Society of Australia, vol. 79(247), pages 491-511, December.
    13. Ravallion, Martin, 2008. "Evaluating Anti-Poverty Programs," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 59, pages 3787-3846, Elsevier.
    14. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    15. Jean-Pierre Florens & James Heckman & Costas Meghir & Edward Vytlacil, 2002. "Instrumental variables, local instrumental variables and control functions," CeMMAP working papers CWP15/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Brian Bell & Richard Blundell & John Reenen, 1999. "Getting the Unemployed Back to Work: The Role of Targeted Wage Subsidies," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 6(3), pages 339-360, August.
    17. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    18. Richard Blundell & Monica Costa Dias, 2000. "Evaluation methods for non-experimental data," Fiscal Studies, Institute for Fiscal Studies, vol. 21(4), pages 427-468, January.
    19. Baum-Snow, Nathaniel & Ferreira, Fernando, 2015. "Causal Inference in Urban and Regional Economics," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 3-68, Elsevier.
    20. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.

    More about this item

    Keywords

    Evaluation methods; Matching; Instrumental variables; Social experiments; Natural experiments;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:portec:v:1:y:2002:i:2:d:10.1007_s10258-002-0010-3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.