IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Propensity score matching

Listed author(s):
  • Barbara Sianesi


    (Institute for Fiscal Studies)

The typical evaluation problem aims at quantifying the impact of a ÔtreatmentÕ (e.g. a training programme, a reform, or a medicine) on an outcome of interest (such as earnings, school attendance or illness indicators), where a group of units, the ÔtreatedÕ, receive the ÔtreatmentÕ, while a second group remains untreated. Statistical matching involves pairing to each treated unit a non-treated unit with the ÔsameÕ observable characteristics, so that (under some assumptions) the outcome experienced by the matched pool of non-treated may be taken as the outcome the treated units would have experienced had they not been treated. Alternatively, one can associate to each treated unit a matched outcome given by the average of the outcome of all the untreated units, where each of their contributions can be weighted according to their 'distance' to the treated unit under consideration. An interesting quantity which avoids the dimensionality problem is the Ôpropensity scoreÕ, the conditional probability of being treated. psmatch implements various types of propensity score matching estimators: from one-to-one matching with replacement (optionally within a caliper) to a number of smoothed versions (including nearest neighbours, kernel, local linear regression). Additionally, it allows to implement Mahalanobis metric matching on two or three variables. Other options include estimation of the propensity score, bootstrapping of the treatment effect, the creation of matching quality indicators for a set of specified variables and producing a smoothed outcome for the treated as well. The software (version 2.0) was revised in August 2001. The current version is psmatch2 of Leuven and Sianesi.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2001 with number 12.

in new window

Date of creation: 25 Apr 2001
Date of revision: 23 Aug 2001
Handle: RePEc:boc:usug01:12
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
  2. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:usug01:12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.