IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp4237.html
   My bibliography  Save this paper

Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness

Author

Listed:
  • Flores, Carlos A.

    () (California Polytechnic State University)

  • Flores-Lagunes, Alfonso

    () (Syracuse University)

Abstract

An important goal when analyzing the causal effect of a treatment on an outcome is to understand the mechanisms through which the treatment causally works. We define a causal mechanism effect of a treatment and the causal effect net of that mechanism using the potential outcomes framework. These effects provide an intuitive decomposition of the total effect that is useful for policy purposes. We offer identification conditions based on an unconfoundedness assumption to estimate them, within a heterogeneous effect environment, and for the cases of a randomly assigned treatment and when selection into the treatment is based on observables. Two empirical applications illustrate the concepts and methods.

Suggested Citation

  • Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp4237
    as

    Download full text from publisher

    File URL: http://ftp.iza.org/dp4237.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Donald B. Rubin, 2004. "Direct and Indirect Causal Effects via Potential Outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 161-170, June.
    3. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, January.
    4. Black, Dan A. & Smith, J.A.Jeffrey A., 2004. "How robust is the evidence on the effects of college quality? Evidence from matching," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 99-124.
    5. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    6. Lorraine Dearden & Javier Ferri & Costas Meghir, 2002. "The Effect Of School Quality On Educational Attainment And Wages," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 1-20, February.
    7. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    8. David Card & Dean R. Hyslop, 2005. "Estimating the Effects of a Time-Limited Earnings Subsidy for Welfare-Leavers," Econometrica, Econometric Society, vol. 73(6), pages 1723-1770, November.
    9. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    10. Currie, Janet & Neidell, Matthew, 2007. "Getting inside the "Black Box" of Head Start quality: What matters and what doesn't," Economics of Education Review, Elsevier, vol. 26(1), pages 83-99, February.
    11. Stein, Z. & Kline, J., 1983. "Smoking, alcohol and reproduction," American Journal of Public Health, American Public Health Association, vol. 73(10), pages 1154-1156.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    14. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    15. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    16. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    17. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    18. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    19. Douglas Almond & Kenneth Y. Chay & David S. Lee, 2005. "The Costs of Low Birth Weight," The Quarterly Journal of Economics, Oxford University Press, vol. 120(3), pages 1031-1083.
    20. Bruce D. Meyer, 1995. "Lessons from the U.S. Unemployment Insurance Experiments," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 91-131, March.
    21. Mealli, Fabrizia & Rubin, Donald B., 2003. "Assumptions allowing the estimation of direct causal effects," Journal of Econometrics, Elsevier, vol. 112(1), pages 79-87, January.
    22. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    23. Ronald G. Ehrenberg & George Jakubson & Jeffrey Groen & Eric So & Joseph Price, 2006. "Inside the Black Box of Doctoral Education: What Program Characteristics Influence Doctoral Students' Attrition and Graduation Probabilities?," NBER Working Papers 12065, National Bureau of Economic Research, Inc.
    24. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    25. Flores-Lagunes, Alfonso & Gonzalez, Arturo & Neumann, Todd C., 2005. "Learning but Not Earning? The Value of Job Corps Training for Hispanic Youths," IZA Discussion Papers 1638, Institute of Labor Economics (IZA).
    26. Lars Skipper & Marianne Simonsen, 2006. "The costs of motherhood: an analysis using matching estimators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 919-934.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos A. Flores & Alfonso Flores-Lagunes, 2007. "Identification and Estimation of Casual Mechanisms and Net Effects of a Treatment," Working Papers 0706, University of Miami, Department of Economics.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    4. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    5. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    6. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2003. "Evaluating the impact of education on earnings in the UK: Models, methods and results from the NCDS," IFS Working Papers W03/20, Institute for Fiscal Studies.
    7. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    8. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    9. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
    10. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    11. Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric Tests of Conditional Treatment Effects," Cowles Foundation Discussion Papers 1740, Cowles Foundation for Research in Economics, Yale University.
    12. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    13. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    14. Chabé-Ferret, Sylvain, 2015. "Analysis of the bias of Matching and Difference-in-Difference under alternative earnings and selection processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 110-123.
    15. Nguezet, Paul Martin Dontsop & Diagne, Aliou & Okoruwa, Victor Olusegun & Ojehomon, Vivian, 2011. "Impact of Improved Rice Technology (NERICA varieties) on Income and Poverty among Rice Farming Households in Nigeria: A Local Average Treatment Effect (LATE) Approach," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 50(3), pages 1-25.
    16. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    17. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    18. Arpino, Bruno & Mealli, Fabrizia, 2011. "The specification of the propensity score in multilevel observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
    19. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    20. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.

    More about this item

    Keywords

    causal inference; causal mechanisms; post-treatment variables; principal stratification;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp4237. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Holger Hinte). General contact details of provider: http://www.iza.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.