IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Distance functions for matching in small samples

  • Dettmann, E.
  • Becker, C.
  • Schmeißer, C.

The development of 'standards' for the application of matching algorithms in empirical evaluation studies is still an outstanding goal. The first step of the matching procedure is the choice of an appropriate distance function. In empirical evaluation situations often the sample sizes are small. Moreover, they consist of variables with different scale levels which have to be considered explicitly in the matching process. A simulation is performed which is directed towards these empirical challenges and supplements former studies in this respect. The choice of the analysed distance functions is determined by the results of former theoretical studies and recommendations in the empirical literature. Thus, two balancing scores (the propensity score and the index score) and the Mahalanobis distance are considered. Additionally, aggregated statistical distance functions not yet used for empirical evaluation are included. The matching outcomes are compared using non-parametric scale-specific tests for identical distributions of the characteristics in the treatment and the control groups. The simulation results show that, in small samples, aggregated statistical distance functions are the better choice for summarising similarities in differently scaled variables compared to the commonly used measures.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00450-0
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 55 (2011)
Issue (Month): 5 (May)
Pages: 1942-1960

as
in new window

Handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1942-1960
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. James J. Heckman, 1989. "Choosing Among Alternative Nonexperimental Methods for Estimating the Impact of Social Programs: The Case of Manpower Training," NBER Working Papers 2861, National Bureau of Economic Research, Inc.
  2. Bergemann, Annette & Fitzenberger, Bernd & Speckesser, Stefan, 2005. "Evaluating the Dynamic Employment Effects of Training Programs in East Germany Using Conditional Difference-in-Differences," IZA Discussion Papers 1848, Institute for the Study of Labor (IZA).
  3. Caliendo, Marco & Kopeinig, Sabine, 2005. "Some Practical Guidance for the Implementation of Propensity Score Matching," IZA Discussion Papers 1588, Institute for the Study of Labor (IZA).
  4. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
  5. Frölich, Markus, 2002. "Programme Evaluation with Multiple Treatments," IZA Discussion Papers 542, Institute for the Study of Labor (IZA).
  6. Giuseppe Porro & Stefano Maria Iacus, 2009. "Random Recursive Partitioning: a matching method for the estimation of the average treatment effect," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 163-185.
  7. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-20, September.
  8. Zhao, Zhong, 2005. "Sensitivity of Propensity Score Methods to the Specifications," IZA Discussion Papers 1873, Institute for the Study of Labor (IZA).
  9. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
  10. Michael Lechner & Ruth Miquel, 2010. "Identification of the effects of dynamic treatments by sequential conditional independence assumptions," Empirical Economics, Springer, vol. 39(1), pages 111-137, August.
  11. Hotz, V. Joseph & Crump, Richard K. & Mitnik, Oscar A. & Imbens, Guido, 2009. "Dealing with Limited Overlap in Estimation of Average Treatment Effects," Scholarly Articles 3007645, Harvard University Department of Economics.
  12. Iacus, Stefano M. & Porro, Giuseppe, 2007. "Missing data imputation, matching and other applications of random recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 773-789, October.
  13. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
  14. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366 Elsevier.
  15. Lechner, Michael & Miquel, Ruth & Wunsch, Conny, 2004. "Long-Run Effects of Public Sector Sponsored Training in West Germany," IZA Discussion Papers 1443, Institute for the Study of Labor (IZA).
  16. Eva Reinowski & Birgit Schultz & Jürgen Wiemers, 2004. "Evaluation of Further Training Programmes with an Optimal Matching Algorithm," IWH Discussion Papers 188, Halle Institute for Economic Research.
  17. Jeffrey Smith & Petra Todd, 2003. "Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20035, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
  18. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
  19. Qian, Dajun & Kaddis, John & Niland, Joyce C., 2007. "A matching algorithm for the distribution of human pancreatic islets," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5494-5506, August.
  20. Hujer, Reinhard & Thomsen, Stephan L., 2010. "How do the employment effects of job creation schemes differ with respect to the foregoing unemployment duration?," Labour Economics, Elsevier, vol. 17(1), pages 38-51, January.
  21. Joshua Angrist & Jinyong Hahn, 2004. "When to Control for Covariates? Panel Asymptotics for Estimates of Treatment Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 58-72, February.
  22. Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
  23. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
  24. Barbara Sianesi, 2004. "An Evaluation of the Swedish System of Active Labor Market Programs in the 1990s," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 133-155, February.
  25. Dan A. Black & Jeffrey Smith, 2003. "How Robust is the Evidence on the Effects of College Quality? Evidence From Matching," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20033, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
  26. Michael Lechner, 2004. "Sequential Matching Estimation of Dynamic Causal Models," University of St. Gallen Department of Economics working paper series 2004 2004-06, Department of Economics, University of St. Gallen.
  27. Lechner, Michael, 1999. "Earnings and Employment Effects of Continuous Off-the-Job Training in East Germany after Unification," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 74-90, January.
  28. Augurzky, Boris & Kluve, Jochen, 2004. "Assessing the Performance of Matching Algorithms When Selection into Treatment Is Strong," IZA Discussion Papers 1301, Institute for the Study of Labor (IZA).
  29. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
  30. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097 Elsevier.
  31. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
  32. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
  33. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
  34. Hujer, Reinhard & Caliendo, Marco, 2000. "Evaluation of Active Labour Market Policy: Methodological Concepts and Empirical Estimates," IZA Discussion Papers 236, Institute for the Study of Labor (IZA).
  35. Zhong Zhao, 2004. "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 91-107, February.
  36. Markus Frölich, 2004. "Finite-Sample Properties of Propensity-Score Matching and Weighting Estimators," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 77-90, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:5:p:1942-1960. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.