IDEAS home Printed from
   My bibliography  Save this article

When to Control for Covariates? Panel Asymptotics for Estimates of Treatment Effects


  • Joshua Angrist

    (MIT and NBER)

  • Jinyong Hahn



The problem of when to control for continuous or high-dimensional discrete covariate vectors arises in both experimental and observational studies. Large-cell asymptotic arguments suggest that full control for covariates or stratification variables is always efficient, even if treatment is assigned independently of covariates or strata. Here, we approximate the behavior of different estimators using a panel-data-type asymptotic sequence with fixed cell sizes and the number of cells increasing to infinity. Exact calculations in simple examples and Monte Carlo evidence suggest this generates a substantially improved approximation to actual finite-sample distributions. Under this sequence, full control for covariates is dominated by propensity-score matching when cell sizes are small, the explanatory power of the covariates conditional on the propensity score is low, and/or the probability of treatment is close to 0 or 1. Our panel-asymptotic framework also provides an explanation for why propensity-score matching can dominate covariate matching even when there are no empty cells. Finally, we introduce a random-effects estimator that provides finite-sample efficiency gains over both covariate matching and propensity-score matching. 2004 President and Fellows of Harvard College and the Massachusetts Institute of Technology.

Suggested Citation

  • Joshua Angrist & Jinyong Hahn, 2004. "When to Control for Covariates? Panel Asymptotics for Estimates of Treatment Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 58-72, February.
  • Handle: RePEc:tpr:restat:v:86:y:2004:i:1:p:58-72

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:86:y:2004:i:1:p:58-72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ann Olson). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.