IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2008i91-92p189-216.html
   My bibliography  Save this article

Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data

Author

Listed:
  • Jose C. Galdo
  • Jeffrey Smith
  • Dan Black

Abstract

This paper addresses the selection of smoothing parameters for estimating the average treatment effect on the treated using matching methods. Because precise estimation of the expected counterfactual is particularly important in regions containing the mass of the treated units, we define and implement weighted cross-validation approaches that improve over conventional methods by considering the location of the treated units in the selection of the smoothing parameters. We also implement a locally varying bandwidth method that uses larger bandwidths in areas where the mass of the treated units is located. A Monte Carlo study compares our proposed methods to the conventional unweighted method and to a related method inspired by BERGEMANN et al. [2005]. The Monte Carlo analysis indicates efficiency gains from all methods that take account of the location of the treated units. We also apply all five methods to bandwidth selection in the context of the data from LALONDE'S [1986] study of the performance of non-experimental estimators using the experimental data from the National Supported Work (NSW) Demonstration program as a benchmark. Overall, both the Monte Carlo analysis and the empirical application show feasible precision gains for the weighted cross-validation and the locally varying bandwidth approaches.

Suggested Citation

  • Jose C. Galdo & Jeffrey Smith & Dan Black, 2008. "Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data," Annals of Economics and Statistics, GENES, issue 91-92, pages 189-216.
  • Handle: RePEc:adr:anecst:y:2008:i:91-92:p:189-216
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/27917245
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    3. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    4. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    5. Jianqing Fan & Theo Gasser & Irène Gijbels & Michael Brockmann & Joachim Engel, 1997. "Local Polynomial Regression: Optimal Kernels and Asymptotic Minimax Efficiency," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(1), pages 79-99, March.
    6. Black, Dan A. & Smith, J.A.Jeffrey A., 2004. "How robust is the evidence on the effects of college quality? Evidence from matching," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 99-124.
    7. Annette Bergemann & Bernd Fitzenberger & Stefan Speckesser, 2009. "Evaluating the dynamic employment effects of training programs in East Germany using conditional difference-in-differences," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 797-823.
    8. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    9. Markus Frlich, 2004. "Finite-Sample Properties of Propensity-Score Matching and Weighting Estimators," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 77-90, February.
    10. Smith, Jeffrey & Todd, Petra, 2005. "Rejoinder," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 365-375.
    11. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    12. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    13. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    14. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    15. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    16. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    17. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    18. Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers CWP04/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Dehejia, Rajeev, 2005. "Practical propensity score matching: a reply to Smith and Todd," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 355-364.
    20. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    21. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    22. Wang-Sheng Lee, 2013. "Propensity score matching and variations on the balancing test," Empirical Economics, Springer, vol. 44(1), pages 47-80, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Caliendo, 2009. "Start-up subsidies in East Germany: finally, a policy that works?," International Journal of Manpower, Emerald Group Publishing, vol. 30(7), pages 625-647, November.
    2. Caliendo, Marco & Mahlstedt, Robert & Mitnik, Oscar A., 2017. "Unobservable, but unimportant? The relevance of usually unobserved variables for the evaluation of labor market policies," Labour Economics, Elsevier, vol. 46(C), pages 14-25.
    3. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute for the Study of Labor (IZA).
    4. Martin Biewen & Bernd Fitzenberger & Aderonke Osikominu & Marie Paul, 2014. "The Effectiveness of Public-Sponsored Training Revisited: The Importance of Data and Methodological Choices," Journal of Labor Economics, University of Chicago Press, vol. 32(4), pages 837-897.
    5. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    6. Peter Z. Schochet & Ronald D'Amico & Jillian Berk & Nathan Wozny, 2012. "Methodological Notes Regarding the Impact Analysis," Mathematica Policy Research Reports 0b22093bbd87457c9ae4125d0, Mathematica Policy Research.
    7. Hagen, Tobias, 2016. "Econometric Evaluation of a Placement Coaching Program for Recipients of Disability Insurance Benefits in Switzerland," Annual Conference 2016 (Augsburg): Demographic Change 145736, Verein für Socialpolitik / German Economic Association.
    8. Alm, Bastian & Bade, Franz-Josef, 2009. "The impact of firm subsidies: Evaluating German regional policy," EconStor Preprints 103402, ZBW - German National Library of Economics.
    9. Bernd Fitzenberger & Olga Orlanski & Aderonke Osikominu & Marie Paul, 2013. "Déjà Vu? Short-term training in Germany 1980–1992 and 2000–2003," Empirical Economics, Springer, vol. 44(1), pages 289-328, February.
    10. Bellmann, Lutz & Caliendo, Marco & Tübbicke, Stefan, 2017. "The Post-Reform Effectiveness of the New German Start-Up Subsidy for the Unemployed," IZA Discussion Papers 11055, Institute for the Study of Labor (IZA).
    11. Hagen, Tobias, 2016. "Econometric evaluation of a placement coaching program for recipients of disability insurance benefits in Switzerland," Working Paper Series: Business and Law 10, Frankfurt University of Applied Sciences, Faculty of Business and Law.
    12. Heinrich, Carolyn J. & Mueser, Peter R. & Troske, Kenneth & Jeon, Kyung-Seong & Kahvecioglu, Daver C., 2009. "New Estimates of Public Employment and Training Program Net Impacts: A Nonexperimental Evaluation of the Workforce Investment Act Program," IZA Discussion Papers 4569, Institute for the Study of Labor (IZA).
    13. Alberto Chong & José Galdo, 2006. "Does the Quality of Training Programs Matter? Evidence from Bidding Processes Data," Research Department Publications 4451, Inter-American Development Bank, Research Department.
    14. Dorn, Sabrina & Egger, Peter, 2015. "On the distribution of exchange rate regime treatment effects on international trade," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 75-94.
    15. Wen Ci & Jose Galdo & Marcel Voia & Christopher Worswick, 2015. "Wage returns to mid-career investments in job training through employer supported course enrollment: evidence for Canada," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 4(1), pages 1-25, December.
    16. Hans J. Baumgartner & Marco Caliendo, 2008. "Turning Unemployment into Self-Employment: Effectiveness of Two Start-Up Programmes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(3), pages 347-373, June.
    17. Briel, Stephanie & Osikominu, Aderonke, 2017. "Leadership at School and the Formation of Character Skills," Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168236, Verein für Socialpolitik / German Economic Association.
    18. Duncan Chaplin & Arif Mamun & Ali Protik & John Schurrer & Divya Vohra & Kristine Bos & Hannah Burak & Laura Meyer & Anca Dumitrescu & Christopher Ksoll & Thomas Cook, "undated". "Grid Electricity Expansion in Tanzania by MCC: Findings from a Rigorous Impact Evaluation, Final Report," Mathematica Policy Research Reports 144768f69008442e96369195e, Mathematica Policy Research.
    19. Cuong Viet Nguyen, 2016. "Impacts of rural road on household welfare in Vietnam: Evidence from a replication study," Economics Discussion Papers 2016-40, Kiel Institute for the World Economy (IfW).
    20. repec:mpr:mprres:7734 is not listed on IDEAS
    21. Wang-Sheng Lee, 2013. "Propensity score matching and variations on the balancing test," Empirical Economics, Springer, vol. 44(1), pages 47-80, February.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2008:i:91-92:p:189-216. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Laurent Linnemer). General contact details of provider: http://edirc.repec.org/data/ensaefr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.