IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymptotic expansions for some semiparametric program evaluation estimators

  • Hidehiko Ichimura

    ()

    (Institute for Fiscal Studies and University of Tokyo)

  • Oliver Linton

    ()

    (Institute for Fiscal Studies and London School of Economics)

We investigate the performance of a class of semiparametric estimators of the treatment effect via asymptotic expansions. We derive approximations to the first two moments of the estimator that are valid to 'second order'. We use these approximations to define a method of bandwidth selection. We also propose a degrees of freedom like bias correction that improves the second order properties of the estimator but without requiring estimation of higher order derivatives of the unknown propensity score. We provide some numerical calibrations of the results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cemmap.ifs.org.uk/wps/cwp0104.pdf
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP04/01.

as
in new window

Length:
Date of creation: Sep 2001
Date of revision:
Handle: RePEc:ifs:cemmap:04/01
Contact details of provider: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page: http://cemmap.ifs.org.uk
Email:


More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935 Elsevier.
  2. Linton, Oliver & Xiao, Zhijie, 2001. "Second-Order Approximation For Adaptive Regression Estimators," Econometric Theory, Cambridge University Press, vol. 17(05), pages 984-1024, October.
  3. Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
  4. Härdle, W.K. & Tsybakov, A.B., 1992. "How sensitive are average derivatives?," Discussion Paper 1992-8, Tilburg University, Center for Economic Research.
  5. Jones, M. C. & Sheather, S. J., 1991. "Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 11(6), pages 511-514, June.
  6. Oliver Linton, 1994. "Edgeworth Approximation for MINPIN Estimators in Semiparametric Regression Models," Cowles Foundation Discussion Papers 1086, Cowles Foundation for Research in Economics, Yale University.
  7. Rothenberg, Thomas J, 1984. "Approximate Normality of Generalized Least Squares Estimates," Econometrica, Econometric Society, vol. 52(4), pages 811-25, July.
  8. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
  9. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
  10. Oliver Linton, 2000. "Edgeworth approximations for semiparametric instrumental variable estimators and test statistics," LSE Research Online Documents on Economics 2156, London School of Economics and Political Science, LSE Library.
  11. Hall, Peter & Marron, J. S., 1987. "Estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 109-115, November.
  12. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
  13. Srinivasan, T N, 1970. "Approximations to Finite Sample Moments of Estimators Whose Exact Sampling Distributions are Unknown," Econometrica, Econometric Society, vol. 38(3), pages 533-41, May.
  14. repec:cup:etheor:v:12:y:1996:i:1:p:30-60 is not listed on IDEAS
  15. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
  16. Rothernberg, Thomas J, 1984. "Hypothesis Testing in Linear Models When the Error Covariance Matrix Is Nonscalar," Econometrica, Econometric Society, vol. 52(4), pages 827-42, July.
  17. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
  18. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-80, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:04/01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.