IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Semiparametric Modelling and Estimation: A Selective Overview

  • Dennis Kristensen

    ()

    (Columbia University and CREATES)

Semiparametric models are characterized by a finite- and infinite-dimensional (functional) component. As such they allow for added flexibility over fully parametric models, and at the same time estimators of parametric components can be developed that exhibit standard parametric convergence rates. These two features have made semiparametric models and estimators increasingly popular in applied economics. We give a partial overview over the literature on semiparametric modelling and estimation with particular emphasis on semiparametric regression models. The main focus is on developing two-step semiparametric estimators and deriving their asymptotic properties. We do however also briefly discuss sieve-based estimators and semiparametric efficiency.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/09/rp09_44.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2009-44.

as
in new window

Length: 42
Date of creation: 01 Sep 2009
Date of revision:
Handle: RePEc:aah:create:2009-44
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Discussion Paper 1996-38, Tilburg University, Center for Economic Research.
  2. Pakes, Ariel & Olley, Steven, 1995. "A limit theorem for a smooth class of semiparametric estimators," Journal of Econometrics, Elsevier, vol. 65(1), pages 295-332, January.
  3. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
  4. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
  5. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-82, November.
  6. Xiaohong Chen & Oliver Linton & Ingred Van Keilegom, 2002. "Estimation of semiparametric models when the criterion function is not smooth," CeMMAP working papers CWP02/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  7. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
  8. Newey, W.K., 1992. "Kernel Estimation of Partial Means and a General Variance Estimator," Working papers 93-3, Massachusetts Institute of Technology (MIT), Department of Economics.
  9. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-30, November.
  10. Donald W.K. Andrews, 1988. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Cowles Foundation Discussion Papers 874R, Cowles Foundation for Research in Economics, Yale University, revised May 1989.
  11. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(01), pages 176-200, February.
  12. Hidalgo, Javier, 1992. "Adaptive Estimation in Time Serise Regression Models With Heteroskedasticity of Unknown Form," Econometric Theory, Cambridge University Press, vol. 8(02), pages 161-187, June.
  13. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
  14. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
  15. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
  16. Oliver Linton, 1993. "Second Order Approximation in the Partially Linear Regression Model," Cowles Foundation Discussion Papers 1065, Cowles Foundation for Research in Economics, Yale University.
  17. Newey, W.K., 1989. "Uniform Convergence In Probability And Stochastic Equicontinuity," Papers 342, Princeton, Department of Economics - Econometric Research Program.
  18. Dennis Kristensen, 2009. "Pseudo-Maximum Likelihood Estimation in Two Classes of Semiparametric Diffusion Models," CREATES Research Papers 2009-41, School of Economics and Management, University of Aarhus.
  19. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
  20. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1433-1445, October.
  21. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
  22. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76 Elsevier.
  23. Oliver Linton, 1994. "Edgeworth Approximation for MINPIN Estimators in Semiparametric Regression Models," Cowles Foundation Discussion Papers 1086, Cowles Foundation for Research in Economics, Yale University.
  24. Drost, F.C. & Klaassen, C.A.J., 1997. "Efficient estimation in semiparametric GARCH models," Other publications TiSEM c7de3f1c-c456-433e-a1c6-2, Tilburg University, School of Economics and Management.
  25. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
  26. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74 Elsevier.
  27. Severini, Thomas A. & Tripathi, Gautam, 2001. "A simplified approach to computing efficiency bounds in semiparametric models," Journal of Econometrics, Elsevier, vol. 102(1), pages 23-66, May.
  28. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
  29. repec:cep:stiecm:/2003/450 is not listed on IDEAS
  30. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-91, July.
  31. Robinson, P M, 1988. "Semiparametric Econometrics: A Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(1), pages 35-51, January.
  32. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  33. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-96, May.
  34. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355, March.
  35. Li, Qi & Wooldridge, Jeffrey M., 2002. "Semiparametric Estimation Of Partially Linear Models For Dependent Data With Generated Regressors," Econometric Theory, Cambridge University Press, vol. 18(03), pages 625-645, June.
  36. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2009-44. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.