IDEAS home Printed from
   My bibliography  Save this paper

Efficient Estimation of Copula-based Semiparametric Markov Models




This paper considers efficient estimation of copula-based semiparametric strictly stationary Markov models. These models are characterized by nonparametric invariant (one-dimensional marginal) distributions and parametric bivariate copula functions; where the copulas capture temporal dependence and tail dependence of the processes. The Markov processes generated via tail dependent copulas may look highly persistent and are useful for financial and economic applications. We first show that Markov processes generated via Clayton, Gumbel and Student's $t$ copulas and their survival copulas are all geometrically ergodic. We then propose a sieve maximum likelihood estimation (MLE) for the copula parameter, the invariant distribution and the conditional quantiles. We show that the sieve MLEs of any smooth functionals are root-$n$ consistent, asymptotically normal and efficient; and that their sieve likelihood ratio statistics are asymptotically chi-square distributed. We present Monte Carlo studies to compare the finite sample performance of the sieve MLE, the two-step estimator of Chen and Fan (2006), the correctly specified parametric MLE and the incorrectly specified parametric MLE. The simulation results indicate that our sieve MLEs perform very well; having much smaller biases and smaller variances than the two-step estimator for Markov models generated via Clayton, Gumbel and other tail dependent copulas.

Suggested Citation

  • Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
  • Handle: RePEc:cwl:cwldpp:1691

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    2. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    3. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    4. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    5. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(06), pages 995-1045, December.
    6. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    7. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    8. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    9. Genest, C. & Werker, B.J.M., 2001. "Conditions for the asymptotic semiparametric efficiency of an omnibus estimator of dependence parameters in copula models," Other publications TiSEM b733c3f4-38d2-49aa-a2c7-4, Tilburg University, School of Economics and Management.
    10. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    11. Chen, Jian & Peng, Liang & Zhao, Yichuan, 2009. "Empirical likelihood based confidence intervals for copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 137-151, January.
    12. Xiaotong Shen & Hsin-Cheng Huang & Jimmy Ye, 2004. "Inference After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 751-762, January.
    13. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    14. Andrew J. Patton, 2008. "Copula-Based Models for Financial Time Series," OFRC Working Papers Series 2008fe21, Oxford Financial Research Centre.
    15. Jianqing Fan & Jiancheng Jiang, 2007. "Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 409-444, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    2. Overbeck Ludger & Schmidt Wolfgang M., 2015. "Multivariate Markov Families of Copulas," Dependence Modeling, De Gruyter Open, vol. 3(1), pages 1-13, October.
    3. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(05), pages 923-960, October.
    4. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    5. Demian Pouzo, 2015. "On the Non-Asymptotic Properties of Regularized M-estimators," Papers 1512.06290,, revised Oct 2016.
    6. Jeffrey Racine, 2015. "Mixed data kernel copulas," Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
    7. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    8. Longla, Martial & Peligrad, Magda, 2012. "Some aspects of modeling dependence in copula-based Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 234-240.
    9. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, Elsevier.
    10. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    11. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(06), pages 1165-1185, December.
    12. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    13. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    14. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    15. Rub'en Loaiza-Maya & Michael S. Smith & Worapree Maneesoonthorn, 2017. "Time Series Copulas for Heteroskedastic Data," Papers 1701.07152,
    16. Beatriz Vaz de Melo Mendes & Cecília Aíube, 2011. "Copula based models for serial dependence," International Journal of Managerial Finance, Emerald Group Publishing, vol. 7(1), pages 68-82, February.
    17. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.

    More about this item


    Copula; Tail dependence; Nonlinear Markov models; Geometric ergodicity; Sieve MLE; Semiparametric efficiency; Sieve likelihood ratio statistics; Value-at-Risk;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1691. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.