IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Estimation of Copula-Based Semiparametric Time Series Models

  • Yanqin Fan
  • Xiaohong Chen
Registered author(s):

    This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric invariant (or marginal) distributions and parametric copula functions that capture the temporal dependence of the processes; the implied transition distributions are all semiparametric. Models in this class are easy to simulate, and can be expressed as semiparametric regression transformation models. One advantage of this copula approach is to separate out the temporal dependence(such as tail dependence) from the marginal behavior (such as fat tailedness) of a time series. We present conditions under which processes generated by models in this class are $\beta $-mixing; naturally, these conditions depend only on the copula specification. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic properties are established under easily verifiable conditions. Estimators of important features of the transition distribution such as the (nonlinear) conditional moments and conditional quantiles are easily obtained from estimators of the marginal distribution and the copula parameter; their $\sqrt{n}-$ consistency and asymptotic normality can be obtained using the Delta method. In addition, the semiparametric conditional quantile estimators are automatically monotonic across quantiles.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Econometric Society in its series Econometric Society 2004 Far Eastern Meetings with number 559.

    in new window

    Date of creation: 11 Aug 2004
    Date of revision:
    Handle: RePEc:ecm:feam04:559
    Contact details of provider: Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-82, November.
    2. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
    3. Patrick Gagliardini & Christian Gourieroux, 2002. "Duration Time Series Models with Proportional Hazard," Working Papers 2002-21, Centre de Recherche en Economie et Statistique.
    4. Xiaohong Chen & Lars P. Hansen & Marine Carrasco, 2009. "Nonlinearity and Temporal Dependence," Cowles Foundation Discussion Papers 1652R, Cowles Foundation for Research in Economics, Yale University.
    5. Donald W.K. Andrews, 1999. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Cowles Foundation Discussion Papers 1229, Cowles Foundation for Research in Economics, Yale University.
    6. Andrew J. Patton, 2002. "On the out-of-sample importance of skewness and asymetric dependence for asset allocation," LSE Research Online Documents on Economics 24951, London School of Economics and Political Science, LSE Library.
    7. Xiaohong Chen & Oliver Linton & Ingred Van Keilegom, 2002. "Estimation of semiparametric models when the criterion function is not smooth," CeMMAP working papers CWP02/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    9. Granger, Clive W.J. & Teräsvirta, Timo & Patton, Andrew J., 2002. "Common factors in conditional distributions," SSE/EFI Working Paper Series in Economics and Finance 515, Stockholm School of Economics.
    10. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    11. Gagliardini, Patrick & Gourieroux, Christian, 2007. "An efficient nonparametric estimator for models with nonlinear dependence," Journal of Econometrics, Elsevier, vol. 137(1), pages 189-229, March.
    12. ROCKINGER, Michael & JONDEAU, Eric, 2001. "Conditional dependency of financial series : an application of copulas," Les Cahiers de Recherche 723, HEC Paris.
    13. Patrick Gagliardini & Christian Gourieroux, 2002. "Constrained Nonparametric Copulas," Working Papers 2002-20, Centre de Recherche en Economie et Statistique.
    14. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-87, October.
    15. Joshua Rosenberg, 1999. "Semiparametric Pricing of Multivariate Contingent Claims," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-028, New York University, Leonard N. Stern School of Business-.
    16. Paul Embrechts & Andrea Höing & Alessandro Juri, 2003. "Using copulae to bound the Value-at-Risk for functions of dependent risks," Finance and Stochastics, Springer, vol. 7(2), pages 145-167.
    17. Genest, C. & Werker, B.J.M., 2001. "Conditions for the asymptotic semiparametric efficiency of an omnibus estimator of dependence parameters in copula models," Other publications TiSEM b733c3f4-38d2-49aa-a2c7-4, Tilburg University, School of Economics and Management.
    18. repec:cep:stiecm:/2003/450 is not listed on IDEAS
    19. Yanqin Fan & Xiaohong Chen & Andrew Patton, 2004. "(IAM Series No 003) Simple Tests for Models of Dependence Between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates," FMG Discussion Papers dp483, Financial Markets Group.
    20. Umberto Cherubini & Elisa Luciano, 2002. "Multivariate Option Pricing with Copulas," ICER Working Papers - Applied Mathematics Series 05-2002, ICER - International Centre for Economic Research.
    21. Lung-Fei Lee, 1982. "Some Approaches to the Correction of Selectivity Bias," Review of Economic Studies, Oxford University Press, vol. 49(3), pages 355-372.
    22. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    23. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-12, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:559. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.