IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1130r.html
   My bibliography  Save this paper

The Asymptotic Distribution of Nonparametric Estimates of the Lyapunov Exponent for Stochastic Time Series

Author

Listed:

Abstract

This paper derives the asymptotic distribution of a smoothing-based estimator of the Lyapunov exponent for a stochastic time series under two general scenarios. In the first case, we are able to establish root-T consistency and asymptotic normality, while in the second case, which is more relevant for chaotic processes, we are only able to establish asymptotic normality at a slower rate of convergence. We provide consistent confidence intervals for both cases. We apply our procedures to simulated data.

Suggested Citation

  • Yoon-Jae Whang & Oliver Linton, 1997. "The Asymptotic Distribution of Nonparametric Estimates of the Lyapunov Exponent for Stochastic Time Series," Cowles Foundation Discussion Papers 1130R, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1130r
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d11/d1130-r.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    2. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    3. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Dechert, W D & Gencay, R, 1992. "Lyapunov Exponents as a Nonparametric Diagnostic for Stability Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 41-60, Suppl. De.
    6. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    7. Brock, W. A., 1986. "Distinguishing random and deterministic systems: Abridged version," Journal of Economic Theory, Elsevier, vol. 40(1), pages 168-195, October.
    8. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serletis, Apostolos & Shintani, Mototsugu, 2006. "Chaotic monetary dynamics with confidence," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 228-252, March.
    2. Shintani, Mototsugu & Linton, Oliver, 2004. "Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos," Journal of Econometrics, Elsevier, vol. 120(1), pages 1-33, May.
    3. Wolff Rodney & Yao Qiwei & Tong Howell, 2004. "Statistical Tests for Lyapunov Exponents of Deterministic Systems," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-19, May.
    4. Shintani, Mototsugu, 2008. "A dynamic factor approach to nonlinear stability analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2788-2808, September.
    5. Serletis, Apostolos & Uritskaya, Olga Y., 2007. "Detecting signatures of stochastic self-organization in US money and velocity measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 281-291.
    6. Simón Sosvilla-Rivero & Fernando Fernández-Rodriguez & Julián Andrada-Félix, 2005. "Testing chaotic dynamics via Lyapunov exponents," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 911-930.
    7. Park, Joon Y. & Whang, Yoon-Jae, 2012. "Random walk or chaos: A formal test on the Lyapunov exponent," Journal of Econometrics, Elsevier, vol. 169(1), pages 61-74.
    8. Jorge Belaire-Franch & Kwaku Opong, 2013. "A Time Series Analysis of U.K. Construction and Real Estate Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(3), pages 516-542, April.
    9. Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero & Julián Andrada-Félix, "undated". "A New Test for Chaotic Dynamics Using Lyapunov Exponents," Working Papers 2003-09, FEDEA.
    10. Kyrtsou, Catherine & Serletis, Apostolos, 2006. "Univariate tests for nonlinear structure," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 154-168, March.
    11. Bask Mikael & de Luna Xavier, 2002. "Characterizing the Degree of Stability of Non-linear Dynamic Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(1), pages 1-19, April.
    12. Kyrtsou, Catherine & Malliaris, Anastasios G. & Serletis, Apostolos, 2009. "Energy sector pricing: On the role of neglected nonlinearity," Energy Economics, Elsevier, vol. 31(3), pages 492-502, May.
    13. J. Barkley Rosser, 1999. "On the Complexities of Complex Economic Dynamics," Journal of Economic Perspectives, American Economic Association, vol. 13(4), pages 169-192, Fall.
    14. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.

    More about this item

    Keywords

    Chaos; kernel; nonlinear dynamics; nonparametric regression; semiparametric;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1130r. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.