IDEAS home Printed from https://ideas.repec.org/p/van/wpaper/0225.html
   My bibliography  Save this paper

Evaluating Density Forecasts via the Copula Approach

Author

Listed:
  • Xiaohong Chen

    (Department of Economics, New York University)

  • Yanqin Fan

    (Department of Ecomomics, Vanderbilt University)

Abstract

In this paper, we develop a general approach for constructing simple tests for the correct density forecasts, or equivalently, for i.i.d. uniformity of appropriately transformed random variables. It is based on nesting a series of i.i.d. uniform random variables into a class of copula-based stationary Markov processes. As such, it can be used to test for i.i.d. uniformity against alternative processes that exhibit a wide variety of marginal properties and temporal dependence properties, including skewed and fat-tailed marginal distributions, asymmetric dependence, and positive tail dependence. In addition, we develop tests for the dependence structure of the forecasting model that are robust to possible misspecification of the marginal distribution.

Suggested Citation

  • Xiaohong Chen & Yanqin Fan, 2002. "Evaluating Density Forecasts via the Copula Approach," Vanderbilt University Department of Economics Working Papers 0225, Vanderbilt University Department of Economics, revised Sep 2003.
  • Handle: RePEc:van:wpaper:0225
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/VUECON/vu02-w25R.pdf
    File Function: Revised version, 2003
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    2. Patton, Andrew J, 2001. "Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula," University of California at San Diego, Economics Working Paper Series qt01q7j1s2, Department of Economics, UC San Diego.
    3. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. P. Gagliardini & C. Gourieroux, 2008. "Duration time‐series models with proportional hazard," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 74-124, January.
    6. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    7. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-93, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    2. Isao Ishida, 2005. "Scanning Multivariate Conditional Densities with Probability Integral Transforms," CIRJE F-Series CIRJE-F-369, CIRJE, Faculty of Economics, University of Tokyo.
    3. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    4. Diep Duong & Norman Swanson, 2013. "Density and Conditional Distribution Based Specification Analysis," Departmental Working Papers 201312, Rutgers University, Department of Economics.
    5. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    6. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    7. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    8. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    9. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    10. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    11. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    12. Egorov, Alexei V. & Hong, Yongmiao & Li, Haitao, 2006. "Validating forecasts of the joint probability density of bond yields: Can affine models beat random walk?," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 255-284.
    13. Jonas Dovern & Hans Manner, 2020. "Order‐invariant tests for proper calibration of multivariate density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
    14. Yanqin Fan & Xiaohong Chen & Andrew Patton, 2004. "(IAM Series No 003) Simple Tests for Models of Dependence Between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates," FMG Discussion Papers dp483, Financial Markets Group.
    15. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    16. repec:wyi:journl:002109 is not listed on IDEAS
    17. Dennis Kristensen, 2004. "A Semiparametric Single-Factor Model of the Term Structure," FMG Discussion Papers dp501, Financial Markets Group.
    18. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.
    19. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
    20. Igor L. Kheifets, 2015. "Specification tests for nonlinear dynamic models," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 67-94, February.
    21. Shamiri, Ahmed & Shaari, Abu Hassan & Isa, Zaidi, 2007. "Practical Volatility Modeling for Financial Market Risk Management," MPRA Paper 9790, University Library of Munich, Germany, revised 15 May 2008.

    More about this item

    Keywords

    Density forecasts; Gaussian copula; probability integral transform; nonlinear time series;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:van:wpaper:0225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: http://www.vanderbilt.edu/econ/wparchive/index.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.