IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Autocontour-based evaluation of multivariate predictive densities

  • González-Rivera, Gloria
  • Yoldas, Emre

We contribute to the rather sparse literature on multivariate density forecasting by introducing a new framework for the out-of-sample evaluation of multivariate density forecast models which builds on the concept of “autocontours” proposed by González-Rivera, Senyuz, and Yoldas (2011). This approach uniquely combines formal testing with graphical devices. We work with the one-step-ahead quantile residuals, which must be i.i.d. (univariate and multivariate) normal under the null hypothesis of a correct density model. Their corresponding autocontours are mathematically very tractable, and the tests based on them enjoy standard asymptotic properties. We show that parameter uncertainty is asymptotically irrelevant under certain conditions, and that, in general, a parametric bootstrap provides outstanding finite sample properties. We provide simulation evidence on the finite sample performances of the tests and compare their performances with that of an alternative testing procedure. We also illustrate this methodology by evaluating bivariate density forecasts of the returns on US value and growth portfolios.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0169207011000999
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 28 (2012)
Issue (Month): 2 ()
Pages: 328-342

as
in new window

Handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:328-342
Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Perez-Quiros, Gabriel & Timmermann, Allan, 2001. "Business cycle asymmetries in stock returns: Evidence from higher order moments and conditional densities," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 259-306, July.
  2. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  3. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
  4. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
  5. Valentina Corradi & Norman Swanson, 2004. "Predective Density and Conditional Confidence Interval Accuracy Tests," Departmental Working Papers 200423, Rutgers University, Department of Economics.
  6. Massimo Guidolin & Allan Timmerman, 2005. "Size and value anomalies under regime shifts," Working Papers 2005-007, Federal Reserve Bank of St. Louis.
  7. Valentina Corradi & Norman R. Swanson, 2003. "Bootstrap Conditional Distribution Tests In the Presence of Dynamic Misspecification," Departmental Working Papers 200311, Rutgers University, Department of Economics.
  8. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
  9. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  10. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  11. M. Hashem Pesaran & Christoph Schleicher & Paolo Zaffaroni, 2008. "Model Averaging in Risk Management with an Application to Futures Markets," CESifo Working Paper Series 2231, CESifo Group Munich.
  12. Sheppard, Kevin & Cappiello, Lorenzo & Engle, Robert F., 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 0204, European Central Bank.
  13. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 130-168.
  14. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
  15. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
  16. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  17. Yi‐Ting Chen, 2011. "Moment tests for density forecast evaluation in the presence of parameter estimation uncertainty," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(4), pages 409-450, July.
  18. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-30, August.
  19. Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
  20. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
  21. Daniel Berg, 2009. "Copula goodness-of-fit testing: an overview and power comparison," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 675-701.
  22. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
  23. Bai, Jushan & Chen, Zhihong, 2008. "Testing multivariate distributions in GARCH models," Journal of Econometrics, Elsevier, vol. 143(1), pages 19-36, March.
  24. Horowitz, Joel L., 2001. "The bootstrap and hypothesis tests in econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 37-40, January.
  25. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
  26. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 353-384.
  27. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:328-342. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.