IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/201431.html
   My bibliography  Save this paper

Generalized Autocontours: Evaluation of Multivariate Density Models

Author

Listed:
  • Gloria Gonzalez-Rivera

    () (Department of Economics, University of California Riverside)

  • Yingying Sun

Abstract

We propose a new tool, the Generalized Autocontour (G-ACR), as the basis for a battery of dynamic specification tests that are applicable (in-sample or out-of-sample) to univariate or multivariate random processes. We apply this methodology to the modeling of a multivariate system by specifying the dynamics of the marginal distributions of each process in the system, together with a copula that ties up the marginals to produce their multivariate distribution. We work with the probability integral transforms (PIT) of the system that, under a correct specification of the conditional model, should be i.i.d. U[0,1]. The dimensionality of the system is not a constraint, because the information contained in the vector of PITs is condensed into an indicator, which is the basis of the proposed tests. We construct hyper-cubes of different sizes within the maximum hyper-cube formed by a multidimensional uniform density [0,1]n, and assess the locations of the empirical PITs (duplex, triplex, n-plex of observations) within the corresponding population hyper-cubes. If the conditional model is correct, the volumes of the population hyper-cubes must be the same as those in their empirical counterparts. This approach allows the researcher to focus on different areas of the conditional density model, so as to assess the regions of interest. We estimate a trivariate model for a very large number of trades on the stocks of three large U.S. banks and find that the contemporaneous dependence among institutions is asymmetric, which implies that when liquidity drains (due to a lack of trading) in one institution, we should expect a concurrent effect among similar institutions. On the other hand, when liquidity is plentiful (due to dense trading), the trades on the stocks of the institutions are not correlated. We assess the models’ performances by evaluating their one-step-ahead density forecasts of trades.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gloria Gonzalez-Rivera & Yingying Sun, 2014. "Generalized Autocontours: Evaluation of Multivariate Density Models," Working Papers 201431, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:201431
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/201431.pdf
    File Function: First version, 2014
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. González-Rivera, Gloria & Senyuz, Zeynep & Yoldas, Emre, 2011. "Autocontours: Dynamic Specification Testing," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 186-200.
    2. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173.
    3. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    4. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    5. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, June.
    6. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    7. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
    8. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Rivera, Gloria & Sun, Yingying, 2017. "Density forecast evaluation in unstable environments," International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.
    2. João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
    3. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    4. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
    5. Veiga, Helena & Ruiz, Esther & González-Rivera, Gloria & Gonçalves Mazzeu, Joao Henrique, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Anatolyev, Stanislav & Baruník, Jozef, 2019. "Forecasting dynamic return distributions based on ordered binary choice," International Journal of Forecasting, Elsevier, vol. 35(3), pages 823-835.
    7. Jonas Dovern & Hans Manner, 2020. "Order‐invariant tests for proper calibration of multivariate density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
    8. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Dovern & Hans Manner, 2020. "Order‐invariant tests for proper calibration of multivariate density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
    2. João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
    3. González-Rivera, Gloria & Sun, Yingying, 2017. "Density forecast evaluation in unstable environments," International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.
    4. Veiga, Helena & Ruiz, Esther & González-Rivera, Gloria & Gonçalves Mazzeu, Joao Henrique, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    6. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    7. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    8. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
    9. Igor L. Kheifets, 2015. "Specification tests for nonlinear dynamic models," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 67-94, February.
    10. Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
    11. Ben Omrane, Walid & Heinen, Andréas, 2010. "Public news announcements and quoting activity in the Euro/Dollar foreign exchange market," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2419-2431, November.
    12. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    13. Hashem Pesaran & Paolo Zaffaroni & Banca d'Italia), 2004. "Model Averaging and Value-at-Risk based Evaluation of Large Multi Asset Volatility Models for Risk Management," Money Macro and Finance (MMF) Research Group Conference 2004 101, Money Macro and Finance Research Group.
    14. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    15. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    16. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    17. Francisco Peñaranda, 2004. "Are Vector Autoregressions an Accurate Model for Dynamic Asset Allocation?," Working Papers wp2004_0419, CEMFI.
    18. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    19. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    20. Ahoniemi, Katja & Lanne, Markku, 2009. "Joint modeling of call and put implied volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 239-258.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:201431. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kelvin Mac). General contact details of provider: http://edirc.repec.org/data/deucrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.