IDEAS home Printed from
   My bibliography  Save this article

Autocontours: Dynamic Specification Testing


  • Gloria González-Rivera
  • Zeynep Senyuz
  • Emre Yoldas


We propose a new battery of dynamic specification tests for the joint hypothesis of iid-ness and density function based on the fundamental properties of independent random variables with identical distributions. We introduce a device-the autocontour-whose shape is very sensitive to departures from the null in either direction, thus providing superior power. The tests are parametric with asymptotic t and chi-squared limiting distributions and standard convergence rates. They do not require a transformation of the original data or a Kolmogorov style assessment of goodness-of-fit, explicitly account for parameter uncertainty, and have superior finite sample properties. An application to autoregressive conditional duration (ACD) models for trade durations shows that the difficulty with the assumed densities lies on the probability assigned to very small durations. Supplemental materials for this article are available online.

Suggested Citation

  • Gloria González-Rivera & Zeynep Senyuz & Emre Yoldas, 2011. "Autocontours: Dynamic Specification Testing," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 186-200, January.
  • Handle: RePEc:taf:jnlbes:v:29:y:2011:i:1:p:186-200
    DOI: 10.1198/jbes.2010.08144

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jonas Dovern & Hans Manner, 2018. "Order Invariant Tests for Proper Calibration of Multivariate Density Forecasts," CESifo Working Paper Series 7023, CESifo.
    2. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    3. João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020. "A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
    4. González-Rivera, Gloria & Sun, Yingying, 2017. "Density forecast evaluation in unstable environments," International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.
    5. Andres, P. & Harvey, A., 2012. "The Dyanamic Location/Scale Model: with applications to intra-day financial data," Cambridge Working Papers in Economics 1240, Faculty of Economics, University of Cambridge.
    6. Igor L. Kheifets, 2015. "Specification tests for nonlinear dynamic models," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 67-94, February.
    7. Jonas Dovern & Hans Manner, 2020. "Order‐invariant tests for proper calibration of multivariate density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
    8. Peña Sánchez de Rivera, Daniel & Bermejo Mancera, Miguel Ángel & Sánchez, Ismael, 2011. "Densidad de predicción basada en momentos condicionados y máxima entropía : aplicación a la predicción de potencia eólica," DES - Working Papers. Statistics and Econometrics. WS ws111813, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Gloria Gonzalez-Rivera & Emre Yoldas, 2010. "Multivariate Autocontours for Specification Testing in Multivariate GARCH Models," Working Papers 201436, University of California at Riverside, Department of Economics.
    10. Harvey, Andrew, 2010. "Exponential conditional volatility models," DES - Working Papers. Statistics and Econometrics. WS ws103620, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Yves Dominicy & Hiroaki Ogata & David Veredas, 2013. "Inference for vast dimensional elliptical distributions," Computational Statistics, Springer, vol. 28(4), pages 1853-1880, August.
    12. Veiga, Helena & Ruiz, Esther & González-Rivera, Gloria & Gonçalves Mazzeu, Joao Henrique, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. González-Rivera, Gloria & Sun, Yingying, 2015. "Generalized autocontours: Evaluation of multivariate density models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 799-814.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:29:y:2011:i:1:p:186-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.