IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Dyanamic Location/Scale Model: with applications to intra-day financial data

  • Andres, P.
  • Harvey, A.

In dynamic conditional score models, the innovation term of the dynamic specification is the score of the conditional distribution. These models are investigated for non-negative variables, using distributions from the generalized beta and generalized gamma families. The log-normal distribution is also considered. Applications to the daily range of stock market indices are reported and models are fitted to duration data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.cam.ac.uk/research/repec/cam/pdf/cwpe1240.pdf
Download Restriction: no

Paper provided by Faculty of Economics, University of Cambridge in its series Cambridge Working Papers in Economics with number 1240.

as
in new window

Length:
Date of creation: 26 Sep 2012
Date of revision:
Handle: RePEc:cam:camdae:1240
Contact details of provider: Web page: http://www.econ.cam.ac.uk/index.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
  2. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  3. Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, EconWPA.
  4. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, March.
  5. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, 09.
  6. BAUWENS , Luc & GIOT, Pierre & GRAMMIG, Joachim & VEREDAS, David, 2000. "A comparison of financial duration models via density forecasts," CORE Discussion Papers 2000060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Drew Creal & Siem Jan Koopman & André Lucas, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 552-563, October.
  8. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  9. Drew Creal & Siem Jan Koopman & Andr� Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
  10. Torben G. Andersen & Tim Bollerslev, 1998. "Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," Journal of Finance, American Finance Association, vol. 53(1), pages 219-265, 02.
  11. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  12. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, 08.
  13. Gloria González-Rivera & Zeynep Senyuz & Emre Yoldas, 2011. "Autocontours: Dynamic Specification Testing," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 186-200, January.
  14. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
  15. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  16. repec:dgr:uvatin:2010032 is not listed on IDEAS
  17. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  18. BAUWENS, Luc & GIOT, Pierre, . "The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks," CORE Discussion Papers RP 1497, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  19. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  20. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  21. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-82, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1240. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Howard Cobb)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.