IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0501002.html

Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment

Author

Listed:
  • Rohit Deo

    (New York University)

  • Clifford Hurvich

    (New York University)

  • Yi Lu

    (New York University)

Abstract

We study the modeling of large data sets of high frequency returns using a long memory stochastic volatility (LMSV) model. Issues pertaining to estimation and forecasting of large datasets using the LMSV model are studied in detail. Furthermore, a new method of de-seasonalizing the volatility in high frequency data is proposed, that allows for slowly varying seasonality. Using both simulated as well as real data, we compare the forecasting performance of the LMSV model for forecasting realized volatility to that of a linear long memory model fit to the log realized volatility. The performance of the new seasonal adjustment is also compared to a recently proposed procedure using real data.

Suggested Citation

  • Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0501002
    Note: Type of Document - pdf; pages: 46
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0501/0501002.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0501002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA The email address of this maintainer does not seem to be valid anymore. Please ask EconWPA to update the entry or send us the correct address (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.