IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v8y2016i1p1-20.html
   My bibliography  Save this article

The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach

Author

Listed:
  • Roman Huptas

    (Cracow University of Economics)

Abstract

In empirical research on financial market microstructure and in testing some predictions from the market microstructure literature, the behavior of some characteristics of trading process can be very important and useful. Among all characteristics associated with tick-by-tick data, the trading time and the price seem the most important. The very first joint model for prices and durations, the so-called UHF-GARCH, has been introduced by Engle (2000). The main aim of this paper is to propose a simple, novel extension of Engle’s specification based on trade-to-trade data and to develop and apply the Bayesian approach to estimation of this model. The intraday dynamics of the return volatility is modelled by an EGARCH-type specification adapted to irregularly time-spaced data. In the analysis of price durations, the Box-Cox ACD model with the generalized gamma distribution for the error term is considered. To the best of our knowledge, the UHF-GARCH model with such a combination of the EGARCH and the Box-Cox ACD structures has not been studied in the literature so far. To estimate the model, the Bayesian approach is adopted. Finally, the methodology developed in the paper is employed to analyze transaction data from the Polish Stock Market.

Suggested Citation

  • Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
  • Handle: RePEc:psc:journl:v:8:y:2016:i:1:p:1-20
    as

    Download full text from publisher

    File URL: http://cejeme.org/publishedarticles/2016-24-25-635945306526093750-5709.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    2. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    4. Luc Bauwens & Pierre Giot, 2003. "Asymmetric ACD models: Introducing price information in ACD models," Empirical Economics, Springer, vol. 28(4), pages 709-731, November.
    5. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    6. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    7. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    8. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    9. Alfonso Dufour & Robert F Engle, 2000. "The ACD Model: Predictability of the Time Between Concecutive Trades," ICMA Centre Discussion Papers in Finance icma-dp2000-05, Henley Business School, University of Reading.
    10. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    11. repec:adr:anecst:y:2000:i:60 is not listed on IDEAS
    12. De Luca, Giovanni & Zuccolotto, Paola, 2006. "Regime-switching Pareto distributions for ACD models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2179-2191, December.
    13. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    14. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    15. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    16. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    17. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    18. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    19. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    20. Roman Huptas, 2009. "Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 128-138.
    21. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    22. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    2. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    3. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    4. Pérez-Rodríguez, Jorge V. & Gómez-Déniz, Emilio & Sosvilla-Rivero, Simón, 2021. "Testing unobserved market heterogeneity in financial markets: The case of Banco Popular," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 151-160.
    5. Bhatti, Chad R., 2009. "Intraday trade and quote dynamics: A Cox regression analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2240-2249.
    6. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    7. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    8. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    9. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
    10. Danúbia R. Cunha & Roberto Vila & Helton Saulo & Rodrigo N. Fernandez, 2020. "A General Family of Autoregressive Conditional Duration Models Applied to High-Frequency Financial Data," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 13(3), pages 1-20, March.
    11. Bhatti, Chad R., 2009. "On the interday homogeneity in the intraday rate of trading," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2250-2257.
    12. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    13. Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.
    14. Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
    15. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    16. Vasileios Siakoulis & Ioannis Venetis, 2015. "On inter-arrival times of bond market extreme events. An application to seven European markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(4), pages 717-741, October.
    17. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    18. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    19. Gómez-Déniz, E. & Pérez-Rodríguez, J.V., 2019. "Modelling bimodality of length of tourist stay," Annals of Tourism Research, Elsevier, vol. 75(C), pages 131-151.
    20. Stanislav Anatolyev & Dmitry Shakin, 2007. "Trade intensity in the Russian stock market: dynamics, distribution and determinants," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 87-104.

    More about this item

    Keywords

    intraday volatility; UHF-GARCH-type model; ACD model; transaction data; Bayesian inference;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:8:y:2016:i:1:p:1-20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://cejeme.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.