IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i8p3286-3294.html
   My bibliography  Save this article

Multidimensional risk and risk dependence

Author

Listed:
  • Polanski, Arnold
  • Stoja, Evarist
  • Zhang, Ren

Abstract

Evaluating multiple sources of risk is an important problem with many applications in finance and economics. In practice this evaluation remains challenging. We propose a simple non-parametric framework with several economic and statistical applications. In an empirical study, we illustrate the flexibility of our technique by applying it to the evaluation of multidimensional density forecasts, multidimensional Value at Risk and dependence in risk.

Suggested Citation

  • Polanski, Arnold & Stoja, Evarist & Zhang, Ren, 2013. "Multidimensional risk and risk dependence," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3286-3294.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:8:p:3286-3294
    DOI: 10.1016/j.jbankfin.2013.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426613002057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2013.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    2. Andrew J. Patton, 2009. "Are "Market Neutral" Hedge Funds Really Market Neutral?," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2295-2330, July.
    3. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    4. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    5. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    6. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    7. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    10. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    11. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    12. Chan, Louis K. C. & Karceski, Jason & Lakonishok, Josef, 1998. "The Risk and Return from Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(2), pages 159-188, June.
    13. Ferson, Wayne E. & Harvey, Campbell R., 1994. "Sources of risk and expected returns in global equity markets," Journal of Banking & Finance, Elsevier, vol. 18(4), pages 775-803, September.
    14. Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
    15. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    16. Richard D. F. Harris & Evarist Stoja & Jon Tucker, 2007. "A simplified approach to modeling the co‐movement of asset returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(6), pages 575-598, June.
    17. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    18. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    19. Gary B. Gorton, 2010. "Questions and Answers about the Financial Crisis," NBER Working Papers 15787, National Bureau of Economic Research, Inc.
    20. Bai, Jushan & Chen, Zhihong, 2008. "Testing multivariate distributions in GARCH models," Journal of Econometrics, Elsevier, vol. 143(1), pages 19-36, March.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    23. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284, Elsevier.
    24. Nijskens, Rob & Wagner, Wolf, 2011. "Credit risk transfer activities and systemic risk: How banks became less risky individually but posed greater risks to the financial system at the same time," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1391-1398, June.
    25. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    26. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.
    27. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    28. Lopez, Jose A. & Saidenberg, Marc R., 2000. "Evaluating credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 151-165, January.
    29. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhimei Lei & Kuo-Jui Wu & Li Cui & Ming K Lim, 2018. "A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    2. J. D. Opdyke, 2014. "Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness," Papers 1406.0389, arXiv.org, revised Nov 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    2. Polanski, Arnold & Stoja, Evarist, 2014. "Co-dependence of extreme events in high frequency FX returns," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 164-178.
    3. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    4. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    5. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    6. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    7. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    8. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    9. Ko, Stanley I.M. & Park, Sung Y., 2013. "Multivariate density forecast evaluation: A modified approach," International Journal of Forecasting, Elsevier, vol. 29(3), pages 431-441.
    10. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    11. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    12. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Norwegian School of Economics, Department of Business and Management Science.
    13. Yushu Li & Jonas Andersson, 2020. "A likelihood ratio and Markov chain‐based method to evaluate density forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 47-55, January.
    14. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.
    15. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
    16. Lucio Sarno, 2003. "Nonlinear Exchange Rate Models: A Selective Overview," Rivista di Politica Economica, SIPI Spa, vol. 93(4), pages 3-46, July-Augu.
    17. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    18. Norman Swanson & Nii Ayi Armah, 2006. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 200619, Rutgers University, Department of Economics.
    19. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    20. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.

    More about this item

    Keywords

    Multiple sources of risk; Multidimensional value at risk; Risk distribution; Dependence in risk; Systemic risk;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:8:p:3286-3294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.