IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i6p1270-1281.html
   My bibliography  Save this article

Flexible modeling based on copulas in nonparametric median regression

Author

Listed:
  • Braekers, Roel
  • Van Keilegom, Ingrid

Abstract

Consider the model Y=m(X)+[epsilon], where m([dot operator])=med(Y[dot operator]) is unknown but smooth. It is often assumed that [epsilon] and X are independent. However, in practice this assumption is violated in many cases. In this paper we propose modeling the dependence between [epsilon] and X by means of a copula model, i.e., where is a copula function depending on an unknown parameter [theta], and F[epsilon] and FX are the marginals of [epsilon] and X. Since many parametric copula families contain the independent copula as a special case, the so-obtained regression model is more flexible than the 'classical' regression model. We estimate the parameter [theta] via a pseudo-likelihood method and prove the asymptotic normality of the estimator, based on delicate empirical process theory. We also study the estimation of the conditional distribution of Y given X. The procedure is illustrated by means of a simulation study, and the method is applied to data on food expenditures in households.

Suggested Citation

  • Braekers, Roel & Van Keilegom, Ingrid, 2009. "Flexible modeling based on copulas in nonparametric median regression," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1270-1281, July.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:6:p:1270-1281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00255-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    2. Chen, Xiaohong & Fan, Yanqin, 2007. "A Model Selection Test For Bivariate Failure-Time Data," Econometric Theory, Cambridge University Press, vol. 23(03), pages 414-439, June.
    3. Charpentier, Arthur & Segers, Johan, 2007. "Lower tail dependence for Archimedean copulas: Characterizations and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 525-532, May.
    4. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    5. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    6. Einmahl, J.H.J. & van Keilegom, I., 2006. "Tests for Independence in Nonparametric Regression," Discussion Paper 2006-80, Tilburg University, Center for Economic Research.
    7. Scaillet, Olivier, 2007. "Kernel-based goodness-of-fit tests for copulas with fixed smoothing parameters," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 533-543, March.
    8. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    9. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:6:p:1270-1281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.