IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2302.html

Asymptotic properties of the Bernstein density copula estimator for alpha-mixing data

Author

Listed:
  • BOUEZMARNI, Taoufik
  • ROMBOUTS, Jeroen VK
  • TAAMOUTI, Abderrahim

Abstract

Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of the density copula for [alpha]-mixing data using Bernstein polynomials. We focus only on the dependence structure between stochastic processes, captured by the copula density defined on the unit cube, and not the complete distribution. We study the asymptotic properties of the Bernstein density copula, i.e., we provide the exact asymptotic bias and variance, we establish the uniform strong consistency and the asymptotic normality. An empirical application is considered to illustrate the dependence structure among international stock markets (US and Canada) using the Bernstein density copula estimator.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK & TAAMOUTI, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for alpha-mixing data," LIDAM Reprints CORE 2302, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2302
    DOI: 10.1016/j.jmva.2009.02.014
    Note: In : Journal of Statistical Planning and Inference, 140(1), 139-152, 2010
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Taamouti, Abderrahim & Bouezmarni, Taoufik & El Ghouch, Anouar, 2014. "Nonparametric estimation and inference for conditional density based Granger causality measures," Journal of Econometrics, Elsevier, vol. 180(2), pages 251-264.
    3. repec:cte:werepe:we1212 is not listed on IDEAS
    4. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    5. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2023. "Copula-based estimation of health inequality measures with an application to COVID-19," University of East Anglia School of Economics Working Paper Series 2023-01, School of Economics, University of East Anglia, Norwich, UK..
    6. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2014. "A note on the asymptotic behavior of the Bernstein estimator of the copula density," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 480-487.
    7. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    8. Taamouti, Abderrahim & Bouezmarni, Taoufik & El Ghouch, Anouar, 2012. "Nonparametric Estimation and Inference for Granger Causality Measures," LIDAM Discussion Papers ISBA 2012009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Noh, Hohsuk & El Ghouch, Anouar & Bouezmarni, Taoufik, 2012. "Copula-Based Regression Estimation and Inference," LIDAM Discussion Papers ISBA 2012010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Bouezmarni, Taoufik & El Ghouch, Anouar & Taamouti, Abderrahim, 2011. "Bernstein estimator for unbounded density copula," UC3M Working papers. Economics we1143, Universidad Carlos III de Madrid. Departamento de Economía.
    11. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    12. Mirza Nazmul Hasan & Roel Braekers, 2022. "Modelling the association in bivariate survival data by using a Bernstein copula," Computational Statistics, Springer, vol. 37(2), pages 781-815, April.
    13. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    14. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    15. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2022. "Copula-based estimation of health concentration curves with an application to COVID-19," CIRANO Working Papers 2022s-07, CIRANO.
    16. Okhrin Ostap, 2013. "Editorial to the special issue on Copulae of Statistics & Risk Modeling," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 281-286, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.