IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/we1143.html
   My bibliography  Save this paper

Bernstein estimator for unbounded density copula

Author

Listed:
  • Bouezmarni, Taoufik
  • El Ghouch, Anouar

Abstract

We study the asymptotic properties of the Bernstein estimator for unbounded density copula functions. We show that the estimator converges to infinity at the corner. We establish its relative convergence when the copula is unbounded and we provide the uniform strong consistency of the estimator on every compact in the interior region. We also check the finite simple performance of the estimator via an extensive simulation study and we compare it with other well known nonparametric methods. Finally, we consider an empirical application where the asymmetric dependence between international equity markets (US, Canada, UK, and France) is re-examined.

Suggested Citation

  • Bouezmarni, Taoufik & El Ghouch, Anouar, 2011. "Bernstein estimator for unbounded density copula," UC3M Working papers. Economics we1143, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:we1143
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/3a733c7e-3ef9-4534-acf1-dd0aaee0b1b4/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    2. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    3. Bruce M. Brown & Song Xi Chen, 1999. "Beta‐Bernstein Smoothing for Regression Curves with Compact Support," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 47-59, March.
    4. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    5. Axel Tenbusch, 1997. "Nonparametric curve estimation with bernstein estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 45(1), pages 1-30, January.
    6. Yoshihide Kakizawa, 2006. "Bernstein polynomial estimation of a spectral density," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 253-287, March.
    7. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    8. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    9. W. Gawronski & U. Stadtmüller, 1981. "Smoothing histograms by means of lattice-and continuous distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 28(1), pages 155-164, December.
    10. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernández-Maldonado, Victor Miguel & Erdely, Arturo & Díaz-Viera, Martín & Rios, Leonardo, 2024. "Fast procedure to compute empirical and Bernstein copulas," Applied Mathematics and Computation, Elsevier, vol. 477(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    2. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    4. Mirza Nazmul Hasan & Roel Braekers, 2022. "Modelling the association in bivariate survival data by using a Bernstein copula," Computational Statistics, Springer, vol. 37(2), pages 781-815, April.
    5. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    6. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K. & TAAMOUTI, Abderrahim, 2008. "Asymptotic properties of the Bernstein density copula for dependent data," LIDAM Discussion Papers CORE 2008045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    8. Taamouti, Abderrahim & Bouezmarni, Taoufik & El Ghouch, Anouar, 2014. "Nonparametric estimation and inference for conditional density based Granger causality measures," Journal of Econometrics, Elsevier, vol. 180(2), pages 251-264.
    9. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    10. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    11. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    12. Kwon, Oh Kang & Satchell, Stephen, 2018. "The distribution of cross sectional momentum returns," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 225-241.
    13. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    14. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    15. Cotter, John & Longin, Francois, 2006. "Implied correlation from VaR," MPRA Paper 3506, University Library of Munich, Germany.
    16. L. Bauwens & E. Otranto, 2013. "Modeling the Dependence of Conditional Correlations on Volatility," Working Paper CRENoS 201304, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. Lundblad, Christian T & Jotikasthira, Chotibhak, 2009. "Asset fire sales and purchases and the international transmission of financial shocks," CEPR Discussion Papers 7595, C.E.P.R. Discussion Papers.
    18. Mittnik, Stefan, 2014. "VaR-implied tail-correlation matrices," Economics Letters, Elsevier, vol. 122(1), pages 69-73.
    19. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    20. Meng-Jou Lu & Cathy Yi-Hsuan Chen & Wolfgang Karl Härdle, 2017. "Copula-based factor model for credit risk analysis," Review of Quantitative Finance and Accounting, Springer, vol. 49(4), pages 949-971, November.

    More about this item

    Keywords

    Unbounded copula;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we1143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.