IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2008045.html

Asymptotic properties of the Bernstein density copula for dependent data

Author

Listed:
  • BOUEZMARNI, Taoufik

    (---)

  • ROMBOUTS, Jeroen V.K.
  • TAAMOUTI, Abderrahim

Abstract

Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of the density copula for α-mixing data using Bernstein polynomials. We study the asymptotic properties of the Bernstein density copula, i.e., we provide the exact asymptotic bias and variance, we establish the uniform strong consistency and the asymptotic normality.

Suggested Citation

  • BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K. & TAAMOUTI, Abderrahim, 2008. "Asymptotic properties of the Bernstein density copula for dependent data," LIDAM Discussion Papers CORE 2008045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2008045
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2008.html
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dietmar Pfeifer & Doreen Strassburger & Joerg Philipps, 2020. "Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas," Papers 2010.15709, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2008045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.