IDEAS home Printed from
   My bibliography  Save this article

Asymptotic efficiency of the two-stage estimation method for copula-based models


  • Joe, Harry


For multivariate copula-based models for which maximum likelihood is computationally difficult, a two-stage estimation procedure has been proposed previously; the first stage involves maximum likelihood from univariate margins, and the second stage involves maximum likelihood of the dependence parameters with the univariate parameters held fixed from the first stage. Using the theory of inference functions, a partitioned matrix in a form amenable to analysis is obtained for the asymptotic covariance matrix of the two-stage estimator. The asymptotic relative efficiency of the two-stage estimation procedure compared with maximum likelihood estimation is studied. Analysis of the limiting cases of the independence copula and Frechet upper bound help to determine common patterns in the efficiency as the dependence in the model increases. For the Frechet upper bound, the two-stage estimation procedure can sometimes be equivalent to maximum likelihood estimation for the univariate parameters. Numerical results are shown for some models, including multivariate ordinal probit and bivariate extreme value distributions, to indicate the typical level of asymptotic efficiency for discrete and continuous data.

Suggested Citation

  • Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
  • Handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:401-419

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bengt Muthén, 1978. "Contributions to factor analysis of dichotomous variables," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 551-560, December.
    2. Ulf Olsson, 1979. "Maximum likelihood estimation of the polychoric correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 44(4), pages 443-460, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Maydeu-Olivares, 2006. "Limited information estimation and testing of discretized multivariate normal structural models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 57-77, March.
    2. Kenneth Bollen & Albert Maydeu-Olivares, 2007. "A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 309-326, September.
    3. Bengt Muthén, 1989. "Latent variable modeling in heterogeneous populations," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 557-585, September.
    4. Maydeu-Olivares, Albert, 2002. "Limited information estimation and testing of Thurstonian models for preference data," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 467-483, July.
    5. Maystre, Nicolas & Olivier, Jacques & Thoenig, Mathias & Verdier, Thierry, 2014. "Product-based cultural change: Is the village global?," Journal of International Economics, Elsevier, vol. 92(2), pages 212-230.
    6. Golob, Thomas F., 1988. "Structural Equation Modeling of Travel Choice Dynamics," University of California Transportation Center, Working Papers qt2kj325qv, University of California Transportation Center.
    7. Christopher T. Whelan, 1991. "Chronic Stress, Social Support and Psychological Distress. Published as 'The Role of Social Support in Mediating the Psychological Consequences of Economic Stress', Sociology of Health and Illness, 19," Papers WP023, Economic and Social Research Institute (ESRI).
    8. Yang Yixin & Lü Xin & Ma Jian & Qiao Han, 2014. "A Robust Factor Analysis Model for Dichotomous Data," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 437-450, October.
    9. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    10. Dong, Fengxia & Mitchell, Paul D. & Hurley, Terrance M. & Frisvold, George B., 2012. "Quantifying Farmer Adoption Intensity for Weed Resistance Management Practices and Its Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125194, Agricultural and Applied Economics Association.
    11. Henry Brady, 1989. "Factor and ideal point analysis for interpersonally incomparable data," Psychometrika, Springer;The Psychometric Society, vol. 54(2), pages 181-202, June.
    12. Golob, Thomas F. & Recker, Wilfred W. & Alvarez, Veronica M., 2004. "Safety aspects of freeway weaving sections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 35-51, January.
    13. Edward Haertel, 1990. "Continuous and discrete latent structure models for item response data," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 477-494, September.
    14. Heimeriks, K. & Duysters, G.M. & Vanhaverbeke, W.P.M., 2004. "The evolution of alliance capabilities," Working Papers 04.20, Eindhoven Center for Innovation Studies.
    15. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    16. Golob, Thomas F. & Regan, Amelia C., 1999. "Impacts of Highway Congestion on Freight Operations: Perceptions of Trucking Industry Managers," University of California Transportation Center, Working Papers qt37s3z2xd, University of California Transportation Center.
    17. repec:nsr:niesrd:287 is not listed on IDEAS
    18. Béatrice S Hasler & Bernhard Spanlang & Mel Slater, 2017. "Virtual race transformation reverses racial in-group bias," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-20, April.
    19. Roderick McDonald, 1986. "Describing the elephant: Structure and function in multivariate data," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 513-534, December.
    20. Poon, Wai-Yin & Hung, Hin-Yan, 1996. "Analysis of square tables with ordered categories," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 303-322, July.
    21. Patrick Ward, 2014. "Measuring the Level and Inequality of Wealth: An Application to China," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 613-635, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:401-419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.