IDEAS home Printed from
   My bibliography  Save this article

Asymptotic Robustness Study of the Polychoric Correlation Estimation


  • Shaobo Jin

    () (Uppsala University)

  • Fan Yang-Wallentin

    () (Uppsala University)


Abstract Asymptotic robustness against misspecification of the underlying distribution for the polychoric correlation estimation is studied. The asymptotic normality of the pseudo-maximum likelihood estimator is derived using the two-step estimation procedure. The t distribution assumption and the skew-normal distribution assumption are used as alternatives to the normal distribution assumption in a numerical study. The numerical results show that the underlying normal distribution can be substantially biased, even though skewness and kurtosis are not large. The skew-normal assumption generally produces a lower bias than the normal assumption. Thus, it is worth using a non-normal distributional assumption if the normal assumption is dubious.

Suggested Citation

  • Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:1:d:10.1007_s11336-016-9512-2
    DOI: 10.1007/s11336-016-9512-2

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Albert Maydeu-Olivares, 2006. "Limited information estimation and testing of discretized multivariate normal structural models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 57-77, March.
    2. Scharoun-Lee, Melissa & Adair, Linda S. & Kaufman, Jay S. & Gordon-Larsen, Penny, 2009. "Obesity, race/ethnicity and the multiple dimensions of socioeconomic status during the transition to adulthood: A factor analysis approach," Social Science & Medicine, Elsevier, vol. 68(4), pages 708-716, February.
    3. Berkane, Maia & Kano, Yutaka & Bentler, Peter M., 1994. "Pseudo maximum likelihood estimation in elliptical theory: Effects of misspecification," Computational Statistics & Data Analysis, Elsevier, vol. 18(2), pages 255-267, September.
    4. Jose R.S. Santos & Caio L.N. Azevedo & Heleno Bolfarine, 2013. "A multiple group item response theory model with centered skew-normal latent trait distributions under a Bayesian framework," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(10), pages 2129-2149, October.
    5. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    6. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    7. Anders Christoffersson & Anna Gunsjö, 1996. "A short note on the estimation of the asymptotic covariance matrix for polychoric correlations," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 173-175, March.
    8. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    9. Ulf Olsson, 1979. "Maximum likelihood estimation of the polychoric correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 44(4), pages 443-460, December.
    10. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    11. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    12. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    13. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    14. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    15. Carol Woods & David Thissen, 2006. "Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 281-301, June.
    16. Heleno Bolfarine & Jorge Luis Bazan, 2010. "Bayesian Estimation of the Logistic Positive Exponent IRT Model," Journal of Educational and Behavioral Statistics, , vol. 35(6), pages 693-713, December.
    17. Dylan Molenaar & Conor Dolan & Paul Boeck, 2012. "The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 455-478, July.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:1:d:10.1007_s11336-016-9512-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Mallaigh Nolan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.