IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v48y2023i2p147-188.html
   My bibliography  Save this article

Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models

Author

Listed:
  • Sally Paganin
  • Christopher J. Paciorek

    (University of California, Berkeley)

  • Claudia Wehrhahn

    (University of California, Santa Cruz)

  • Abel Rodríguez

    (University of Washington, Seattle)

  • Sophia Rabe-Hesketh
  • Perry de Valpine

    (University of California, Berkeley)

Abstract

Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT literature has been extremely limited, in good part because of the lack of comprehensive studies and accessible software tools. This article provides guidance for practitioners on semiparametric IRT models and their implementation. In particular, we rely on NIMBLE, a flexible software system for hierarchical models that enables the use of DPMs. We highlight efficient sampling strategies for model estimation and compare inferential results under parametric and semiparametric models.

Suggested Citation

  • Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
  • Handle: RePEc:sae:jedbes:v:48:y:2023:i:2:p:147-188
    DOI: 10.3102/10769986221136105
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986221136105
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986221136105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Fumiko Samejima, 1997. "Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 471-493, December.
    3. Carol Woods & David Thissen, 2006. "Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 281-301, June.
    4. San Martin, Ernesto & Jara, Alejandro & Rolin, Jean-Marie & Mouchart, Michel, 2011. "On the Bayesian nonparametric generalization of IRT-type models," LIDAM Reprints ISBA 2011012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Clinton, Joshua & Jackman, Simon & Rivers, Douglas, 2004. "The Statistical Analysis of Roll Call Data," American Political Science Review, Cambridge University Press, vol. 98(2), pages 355-370, May.
    6. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    7. Yang, Mingan & Dunson, David B. & Baird, Donna, 2010. "Semiparametric Bayes hierarchical models with mean and variance constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2172-2186, September.
    8. Johnson, Matthew S., 2007. "Modeling dichotomous item responses with free-knot splines," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4178-4192, May.
    9. Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
    10. Bafumi, Joseph & Gelman, Andrew & Park, David K. & Kaplan, Noah, 2005. "Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation," Political Analysis, Cambridge University Press, vol. 13(2), pages 171-187, April.
    11. Jara, Alejandro & Hanson, Timothy & Quintana, Fernando A. & Müller, Peter & Rosner, Gary L., 2011. "DPpackage: Bayesian Semi- and Nonparametric Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i05).
    12. Carol M. Woods & David Thissen, 2006. "Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 281-301, June.
    13. Robert Mislevy, 1984. "Estimating latent distributions," Psychometrika, Springer;The Psychometric Society, vol. 49(3), pages 359-381, September.
    14. Mingan Yang & David Dunson, 2010. "Bayesian Semiparametric Structural Equation Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 675-693, December.
    15. Dootika Vats & James M Flegal & Galin L Jones, 2019. "Multivariate output analysis for Markov chain Monte Carlo," Biometrika, Biometrika Trust, vol. 106(2), pages 321-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
    2. Xin-Yuan Song & Zhao-Hua Lu & Jing-Heng Cai & Edward Ip, 2013. "A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 624-647, October.
    3. Ernesto San Martín & Jean-Marie Rolin & Luis Castro, 2013. "Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-parametric Results," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 341-379, April.
    4. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    5. J. R. Lockwood & Katherine E. Castellano & Benjamin R. Shear, 2018. "Flexible Bayesian Models for Inferences From Coarsened, Group-Level Achievement Data," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 663-692, December.
    6. Cindy Cheng & Joan Barcelo & Allison Spencer Hartnett & Robert Kubinec & Luca Messerschmidt, 2020. "CoronaNet: A Dyadic Dataset of Government Responses to the COVID-19 Pandemic," Working Papers 20200042, New York University Abu Dhabi, Department of Social Science, revised Apr 2020.
    7. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    8. Cindy Cheng & Joan Barceló & Allison Spencer Hartnett & Robert Kubinec & Luca Messerschmidt, 2020. "COVID-19 Government Response Event Dataset (CoronaNet v.1.0)," Nature Human Behaviour, Nature, vol. 4(7), pages 756-768, July.
    9. Steven P. Reise & Han Du & Emily F. Wong & Anne S. Hubbard & Mark G. Haviland, 2021. "Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 800-824, September.
    10. Scott Monroe, 2021. "Testing Latent Variable Distribution Fit in IRT Using Posterior Residuals," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 374-398, June.
    11. Eijffinger, Sylvester & Mahieu, Ronald & Raes, Louis, 2018. "Inferring hawks and doves from voting records," European Journal of Political Economy, Elsevier, vol. 51(C), pages 107-120.
    12. Tasos Kalandrakis, 2006. "Roll Call Data and Ideal Points," Wallis Working Papers WP42, University of Rochester - Wallis Institute of Political Economy.
    13. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    14. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    15. Eijffinger, S.C.W. & Mahieu, R.J. & Raes, L.B.D., 2013. "Estimating the Preferences of Central Bankers : An Analysis of Four Voting Records," Discussion Paper 2013-047, Tilburg University, Center for Economic Research.
    16. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    17. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    18. Ke-Hai Yuan & Ying Cheng & Jeff Patton, 2014. "Information Matrices and Standard Errors for MLEs of Item Parameters in IRT," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 232-254, April.
    19. Mario Quaranta, 2018. "The Meaning of Democracy to Citizens Across European Countries and the Factors Involved," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 859-880, April.
    20. Joan C Timoneda, 2018. "Where in the world is my tweet: Detecting irregular removal patterns on Twitter," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:48:y:2023:i:2:p:147-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.