IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/120810.html
   My bibliography  Save this paper

Item response theory—a statistical framework for educational and psychological measurement

Author

Listed:
  • Chen, Yunxiao
  • Li, Xiaoou
  • Liu, Jingchen
  • Ying, Zhiliang

Abstract

Item response theory (IRT) has become one of the most popular statistical models for psychometrics, a field of study concerned with the theory and techniques of psychological measurement. The IRT models are latent factor models tailored to the analysis, interpretation and prediction of individuals’ behaviors in answering a set of measurement items that typically involve categorical response data. Many important questions of measurement are directly or indirectly answered through the use of IRT models, including scoring individuals’ test performances, validating a test scale, linking two tests, among others. This paper provides a review of item response theory, including its statistical framework and psychometric applications. We establish connections between item response theory and related topics in statistics, including empirical Bayes, nonparametric methods, matrix completion, regularized estimation and sequential analysis. Possible future directions of IRT are discussed from the perspective of statistical learning.

Suggested Citation

  • Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2025. "Item response theory—a statistical framework for educational and psychological measurement," LSE Research Online Documents on Economics 120810, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:120810
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/120810/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:120810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.