IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/120810.html
   My bibliography  Save this paper

Item response theory—a statistical framework for educational and psychological measurement

Author

Listed:
  • Chen, Yunxiao
  • Li, Xiaoou
  • Liu, Jingchen
  • Ying, Zhiliang

Abstract

Item response theory (IRT) has become one of the most popular statistical models for psychometrics, a field of study concerned with the theory and techniques of psychological measurement. The IRT models are latent factor models tailored to the analysis, interpretation and prediction of individuals’ behaviors in answering a set of measurement items that typically involve categorical response data. Many important questions of measurement are directly or indirectly answered through the use of IRT models, including scoring individuals’ test performances, validating a test scale, linking two tests, among others. This paper provides a review of item response theory, including its statistical framework and psychometric applications. We establish connections between item response theory and related topics in statistics, including empirical Bayes, nonparametric methods, matrix completion, regularized estimation and sequential analysis. Possible future directions of IRT are discussed from the perspective of statistical learning.

Suggested Citation

  • Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2025. "Item response theory—a statistical framework for educational and psychological measurement," LSE Research Online Documents on Economics 120810, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:120810
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/120810/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua-Hua Chang, 2015. "Psychometrics Behind Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 1-20, March.
    2. Robin Shealy & William Stout, 1993. "A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 159-194, June.
    3. Jingchen Liu & Zhiliang Ying & Stephanie Zhang, 2015. "A Rate Function Approach to Computerized Adaptive Testing for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 468-490, June.
    4. George Ferguson, 1942. "Item selection by the constant process," Psychometrika, Springer;The Psychometric Society, vol. 7(1), pages 19-29, March.
    5. David Andrich, 2010. "Sufficiency and Conditional Estimation of Person Parameters in the Polytomous Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 292-308, June.
    6. William Stout, 1987. "A nonparametric approach for assessing latent trait unidimensionality," Psychometrika, Springer;The Psychometric Society, vol. 52(4), pages 589-617, December.
    7. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    8. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    9. Edward Ip, 2002. "Locally dependent latent trait model and the dutch identity revisited," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 367-386, September.
    10. Edward Ip & Yuchung Wang & Paul Boeck & Michel Meulders, 2004. "Locally dependent latent trait model for polytomous responses with application to inventory of hostility," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 191-216, June.
    11. Chia-Yi Chiu & Jeffrey Douglas & Xiaodong Li, 2009. "Cluster Analysis for Cognitive Diagnosis: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 633-665, December.
    12. John Horn, 1965. "A rationale and test for the number of factors in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 30(2), pages 179-185, June.
    13. Shelby J. Haberman & Sandip Sinharay, 2013. "Generalized Residuals for General Models for Contingency Tables With Application to Item Response Theory," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1435-1444, December.
    14. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    15. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    16. Gongjun Xu & Zhuoran Shang, 2018. "Identifying Latent Structures in Restricted Latent Class Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1284-1295, July.
    17. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    18. Philippe Huber & Elvezio Ronchetti & Maria‐Pia Victoria‐Feser, 2004. "Estimation of generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 893-908, November.
    19. Erling Andersen, 1977. "Sufficient statistics and latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 69-81, March.
    20. Jianan Sun & Yunxiao Chen & Jingchen Liu & Zhiliang Ying & Tao Xin, 2016. "Latent Variable Selection for Multidimensional Item Response Theory Models via $$L_{1}$$ L 1 Regularization," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 921-939, December.
    21. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    22. J. Ramsay & S. Winsberg, 1991. "Maximum marginal likelihood estimation for semiparametric item analysis," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 365-379, September.
    23. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    24. Yunzhang Zhu & Xiaotong Shen & Changqing Ye, 2016. "Personalized Prediction and Sparsity Pursuit in Latent Factor Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 241-252, March.
    25. Curtis Tatsuoka & Thomas Ferguson, 2003. "Sequential classification on partially ordered sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 143-157, February.
    26. Edward H. Ip, 2002. "On Single Versus Multiple Imputation for a Class of Stochastic Algorithms Estimating Maximum Likelihood," Computational Statistics, Springer, vol. 17(4), pages 517-524, December.
    27. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    28. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4243-4258.
    29. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    30. Johan Braeken, 2011. "A Boundary Mixture Approach to Violations of Conditional Independence," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 57-76, January.
    31. Sik-Yum Lee & Wai-Yin Poon & P. Bentler, 1992. "Structural equation models with continuous and polytomous variables," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 89-105, March.
    32. Jeffrey Douglas, 2001. "Asymptotic identifiability of nonparametric item response models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 531-540, December.
    33. Jeff Douglas, 1997. "Joint consistency of nonparametric item characteristic curve and ability estimation," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 7-28, March.
    34. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    35. Robinson, P M, 1974. "Identification, Estimation and Large-Sample Theory for Regressions Containing Unobservable Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(3), pages 680-692, October.
    36. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2018. "Robust measurement via a fused latent and graphical item response theory model," LSE Research Online Documents on Economics 103181, London School of Economics and Political Science, LSE Library.
    37. Yuan-chin Chang, 2005. "Application of Sequential Interval Estimation to Adaptive Mastery Testing," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 685-713, December.
    38. Johan Braeken & Francis Tuerlinckx & Paul Boeck, 2007. "Copula Functions for Residual Dependency," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 393-411, September.
    39. Hsin-Hung Li & William Stout, 1996. "A new procedure for detection of crossing DIF," Psychometrika, Springer;The Psychometric Society, vol. 61(4), pages 647-677, December.
    40. Ying Cheng, 2009. "When Cognitive Diagnosis Meets Computerized Adaptive Testing: CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 619-632, December.
    41. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    42. Shelby Haberman & Sandip Sinharay & Kyong Chon, 2013. "Assessing Item Fit for Unidimensional Item Response Theory Models Using Residuals from Estimated Item Response Functions," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 417-440, July.
    43. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    44. M. Richardson, 1936. "The relation between the difficulty and the differential validity of a test," Psychometrika, Springer;The Psychometric Society, vol. 1(2), pages 33-49, June.
    45. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    46. Jinming Zhang & William Stout, 1999. "The theoretical detect index of dimensionality and its application to approximate simple structure," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 213-249, June.
    47. Paul Holland, 1990. "The Dutch Identity: A new tool for the study of item response models," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 5-18, March.
    48. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    49. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    50. Yunxiao Chen & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2015. "Statistical Analysis of Q -Matrix Based Diagnostic Classification Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 850-866, June.
    51. Johnson, Matthew S., 2007. "Modeling dichotomous item responses with free-knot splines," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4178-4192, May.
    52. Ghosh, Malay, 1995. "Inconsistent maximum likelihood estimators for the Rasch model," Statistics & Probability Letters, Elsevier, vol. 23(2), pages 165-170, May.
    53. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    54. Maydeu-Olivares, Albert & Joe, Harry, 2005. "Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables: A Unified Framework," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1009-1020, September.
    55. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    56. Yunxiao Chen, 2020. "A Continuous-Time Dynamic Choice Measurement Model for Problem-Solving Process Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1052-1075, December.
    57. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    58. Sik-Yum Lee & Wai-Yin Poon & P. Bentler, 1990. "A three-stage estimation procedure for structural equation models with polytomous variables," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 45-51, March.
    59. Mark Reiser, 1996. "Analysis of residuals for the multionmial item response model," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 509-528, September.
    60. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    61. Vasdekis, Vassilis G. S. & Rizopoulos, Dimitris & Moustaki, Irini, 2014. "Weighted pairwise likelihood estimation for a general class of random effects models," LSE Research Online Documents on Economics 56733, London School of Economics and Political Science, LSE Library.
    62. Robert Jennrich, 2006. "Rotation to Simple Loadings Using Component Loss Functions: The Oblique Case," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 173-191, March.
    63. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," LSE Research Online Documents on Economics 43182, London School of Economics and Political Science, LSE Library.
    64. Chen, Yunxiao & Moustaki, Irini & Zhang, H, 2020. "A note on likelihood ratio tests for models with latent variables," LSE Research Online Documents on Economics 107490, London School of Economics and Political Science, LSE Library.
    65. Chen, Yunxiao & Liu, Jingchen & Xu, Gongjun & Ying, Zhiliang, 2015. "Statistical analysis of Q-matrix based diagnostic classification models," LSE Research Online Documents on Economics 103183, London School of Economics and Political Science, LSE Library.
    66. Xueying Tang & Zhi Wang & Qiwei He & Jingchen Liu & Zhiliang Ying, 2020. "Latent Feature Extraction for Process Data via Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 378-397, June.
    67. R. Jennrich & P. Sampson, 1966. "Rotation for simple loadings," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 313-323, September.
    68. Robert Jennrich, 2004. "Rotation to simple loadings using component loss functions: The orthogonal case," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 257-273, June.
    69. Bafumi, Joseph & Gelman, Andrew & Park, David K. & Kaplan, Noah, 2005. "Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation," Political Analysis, Cambridge University Press, vol. 13(2), pages 171-187, April.
    70. Noel Cressie & Paul Holland, 1983. "Characterizing the manifest probabilities of latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 129-141, March.
    71. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    72. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    73. Paul Holland & Machteld Hoskens, 2003. "Classical Test Theory as a first-order Item Response Theory: Application to true-score prediction from a possibly nonparallel test," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 123-149, March.
    74. Robert Jennrich & Peter Bentler, 2011. "Exploratory Bi-Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 537-549, October.
    75. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen & Jeffrey Douglas, 2018. "Bayesian Estimation of the DINA Q matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 89-108, March.
    76. Fienberg, Stephen E. & Meyer, Michael M., 1983. "Loglinear models and categorical data analysis with psychometric and econometric applications," Journal of Econometrics, Elsevier, vol. 22(1-2), pages 191-214.
    77. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
    78. Guanhua Fang & Jingchen Liu & Zhiliang Ying, 2019. "On the Identifiability of Diagnostic Classification Models," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 19-40, March.
    79. Robert Mislevy, 1984. "Estimating latent distributions," Psychometrika, Springer;The Psychometric Society, vol. 49(3), pages 359-381, September.
    80. Seonghoon Kim, 2012. "A Note on the Reliability Coefficients for Item Response Model-Based Ability Estimates," Psychometrika, Springer;The Psychometric Society, vol. 77(1), pages 153-162, January.
    81. Matthew Johnson, 2006. "Nonparametric Estimation of Item and Respondent Locations from Unfolding-type Items," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 257-279, June.
    82. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2020. "Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1756-1770, December.
    83. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    84. Yunxiao Chen & Irini Moustaki & Haoran Zhang, 2020. "A Note on Likelihood Ratio Tests for Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 996-1012, December.
    85. Anders Christoffersson, 1975. "Factor analysis of dichotomized variables," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 5-32, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.
    2. Zhang, Siliang & Chen, Yunxiao, 2022. "Computation for latent variable model estimation: a unified stochastic proximal framework," LSE Research Online Documents on Economics 114489, London School of Economics and Political Science, LSE Library.
    3. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    4. April E. Cho & Jiaying Xiao & Chun Wang & Gongjun Xu, 2024. "Regularized Variational Estimation for Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 347-375, March.
    5. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    6. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    7. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2018. "Robust measurement via a fused latent and graphical item response theory model," LSE Research Online Documents on Economics 103181, London School of Economics and Political Science, LSE Library.
    8. Qiao, Jiawei & Chen, Yunxiao & Ying, Zhiliang, 2025. "Exact exploratory bi-factor analysis: a constraint-based optimization approach," LSE Research Online Documents on Economics 127955, London School of Economics and Political Science, LSE Library.
    9. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    10. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    11. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    12. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    13. Peter W. Rijn & Usama S. Ali & Hyo Jeong Shin & Sean-Hwane Joo, 2024. "Adjusted Residuals for Evaluating Conditional Independence in IRT Models for Multistage Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 317-346, March.
    14. Seunghyun Lee & Yuqi Gu, 2024. "New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data," Psychometrika, Springer;The Psychometric Society, vol. 89(4), pages 1304-1336, December.
    15. Ying Liu & Steven Andrew Culpepper, 2024. "Restricted Latent Class Models for Nominal Response Data: Identifiability and Estimation," Psychometrika, Springer;The Psychometric Society, vol. 89(2), pages 592-625, June.
    16. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    17. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    18. Yuqi Gu, 2024. "Going Deep in Diagnostic Modeling: Deep Cognitive Diagnostic Models (DeepCDMs)," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 118-150, March.
    19. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    20. Zhang, Haoran & Chen, Yunxiao & Li, Xiaoou, 2020. "A note on exploratory item factor analysis by singular value decomposition," LSE Research Online Documents on Economics 104166, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:120810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.