IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v100y2016icp595-615.html
   My bibliography  Save this article

Linking Tukey’s legacy to financial risk measurement

Author

Listed:
  • Vijverberg, Chu-Ping C.
  • Vijverberg, Wim P.M.
  • Taşpınar, Süleyman

Abstract

Financial data are often thick-tailed and exhibit skewness. The versatile Generalized Tukey Lambda (GTL) distribution is able to capture varying degrees of skewness in thin- or thick-tailed data. Such versatility makes the GTL distribution potentially useful in the area of financial risk measurement. Moreover, for GTL-distributed random variables, the familiar risk measures of Value at Risk (VaR) and Expected Shortfall (ES) may be expressed in simple analytical forms. It turns out that, both analytically and through Monte Carlo simulations, GTL’s VaR and ES differ significantly from other flexible distributions. The asymptotic properties of the maximum likelihood estimator of the GTL parameters are also examined. In order to study risk in financial data, the GTL distribution is inserted into a GARCH model. This GTL-GARCH model is estimated with data on daily returns of GE stock, demonstrating that, for certain data sets, GTL may capture risk measurements better than other distributions.11Online supplementary materials consist of appendices with proofs and additional Monte Carlo results, data used in this study, an R script for fitting GTL densities by maximum likelihood, and an R script for estimation of the GTL-GARCH model (see Appendix A).

Suggested Citation

  • Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
  • Handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:595-615
    DOI: 10.1016/j.csda.2015.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315002066
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jondeau, Eric & Rockinger, Michael, 2001. "Gram-Charlier densities," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1457-1483, October.
    2. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    3. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 382-406, Summer.
    4. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 477-492.
    5. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129.
    6. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    7. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    8. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
    9. Liu, Shi-Miin & Brorsen, B Wade, 1995. "Maximum Likelihood Estimation of a Garch-Stable Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(3), pages 273-285, July-Sept.
    10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    11. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    12. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    13. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 275-309.
    14. Charles J. Corrado, 2001. "Option pricing based on the generalized lambda distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 213-236, March.
    15. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (US).
    16. Ke Zhu & Wai Keung Li, 2015. "A New Pearson-Type QMLE for Conditionally Heteroscedastic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 552-565, October.
    17. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    18. repec:wsi:ijtafx:v:11:y:2008:i:01:n:s0219024908004713 is not listed on IDEAS
    19. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(1), pages 87-107, Winter.
    20. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    21. Neil Shephard & Ole E. Barndorff-Nielsen, 2001. "Normal Modified Stable Processes," Economics Series Working Papers 72, University of Oxford, Department of Economics.
    22. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    23. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    24. Karvanen, Juha & Nuutinen, Arto, 2008. "Characterizing the generalized lambda distribution by L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1971-1983, January.
    25. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    26. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    27. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    28. Koenker, Roger & Yoon, Jungmo, 2009. "Parametric links for binary choice models: A Fisherian-Bayesian colloquy," Journal of Econometrics, Elsevier, vol. 152(2), pages 120-130, October.
    29. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    30. Su, Steve, 2007. "Numerical maximum log likelihood estimation for generalized lambda distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3983-3998, May.
    31. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    32. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    33. Matteo Grigoletto & Francesco Lisi, 2009. "Looking for skewness in financial time series," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 310-323, July.
    34. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
    35. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    36. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(2), pages 231-252, Spring.
    37. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    38. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
    39. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    40. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:595-615. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.