IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Which Parametric Model for Conditional Skewness?

  • Bruno Feunou
  • Mohammad R. Jahan-Parvar
  • Roméo Tedongap

This paper addresses an existing gap in the developing literature on conditional skewness. We develop a simple procedure to evaluate parametric conditional skewness models. This procedure is based on regressing the realized skewness measures on model-implied conditional skewness values. We find that an asymmetric GARCH-type specification on shape parameters with a skewed generalized error distribution provides the best in-sample fit for the data, as well as reasonable predictions of the realized skewness measure. Our empirical findings imply significant asymmetry with respect to positive and negative news in both conditional asymmetry and kurtosis processes.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.bankofcanada.ca/wp-content/uploads/2013/09/wp2013-32.pdf
Download Restriction: no

Paper provided by Bank of Canada in its series Working Papers with number 13-32.

as
in new window

Length: 44 pages
Date of creation: 2013
Date of revision:
Handle: RePEc:bca:bocawp:13-32
Contact details of provider: Postal: 234 Wellington Street, Ottawa, Ontario, K1A 0G9, Canada
Phone: 613 782-8845
Fax: 613 782-8874
Web page: http://www.bank-banque-canada.ca/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
  2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  3. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, 06.
  4. Anders Wilhelmsson, 2009. "Value at Risk with time varying variance, skewness and kurtosis--the NIG-ACD model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 82-104, 03.
  5. Chris Brooks, 2005. "Autoregressive Conditional Kurtosis," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(3), pages 399-421.
  6. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
  7. Jennifer Conrad & Robert F. Dittmar & Eric Ghysels, 2013. "Ex Ante Skewness and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 85-124, 02.
  8. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  9. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  11. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
  12. Massimo Guidolin & Allan Timmerman, 2006. "International asset allocation under regime switching, skew and kurtosis preferences," Working Papers 2005-034, Federal Reserve Bank of St. Louis.
  13. Joseph Chen & Harrison Hong & Jeremy C. Stein, 2000. "Forecasting Crashes: Trading Volume, Past Returns and Conditional Skewness in Stock Prices," NBER Working Papers 7687, National Bureau of Economic Research, Inc.
  14. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
  15. Anthony Neuberger, 2012. "Realized Skewness," Review of Financial Studies, Society for Financial Studies, vol. 25(11), pages 3423-3455.
  16. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  17. Markku Lanne & Pentti Saikkonen, 2005. "Modeling Conditional Skewness in Stock Returns," Economics Working Papers ECO2005/14, European University Institute.
  18. Andrew J. Patton, 2002. "On the out-of-sample importance of skewness and asymetric dependence for asset allocation," LSE Research Online Documents on Economics 24951, London School of Economics and Political Science, LSE Library.
  19. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  20. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
  21. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2013. "Modeling Market Downside Volatility," Review of Finance, European Finance Association, vol. 17(1), pages 443-481.
  22. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  23. Kurt Brannas & Niklas Nordman, 2003. "Conditional skewness modelling for stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 10(11), pages 725-728.
  24. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
  25. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
  26. Matteo Grigoletto & Francesco Lisi, 2009. "Looking for skewness in financial time series," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 310-323, 07.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:13-32. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.