IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Practical implications of higher moments in risk management

  • Matteo Grigoletto

    ()

  • Francesco Lisi

    ()

Registered author(s):

    No abstract is available for this item.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10260-011-0166-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Statistical Methods & Applications.

    Volume (Year): 20 (2011)
    Issue (Month): 4 (November)
    Pages: 487-506

    as
    in new window

    Handle: RePEc:spr:stmapp:v:20:y:2011:i:4:p:487-506
    Contact details of provider: Web page: http://link.springer.de/link/service/journals/10260/index.htm

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Matteo Grigoletto & Francesco Lisi, 2009. "Looking for skewness in financial time series," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 310-323, 07.
    2. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
    3. Chris Brooks & Simon P. Burke & Gita Persand, 2002. "Augoregressive Conditional Kurtosis," ICMA Centre Discussion Papers in Finance icma-dp2002-05, Henley Business School, Reading University.
    4. Anders Wilhelmsson, 2006. "Garch forecasting performance under different distribution assumptions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 561-578.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    7. Francesco Lisi, 2007. "Testing asymmetry in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 687-696.
    8. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    9. GIOT, Pierre & LAURENT, Sébastien, 2001. "Value-at-risk for long and short trading positions," CORE Discussion Papers 2001022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-30, August.
    11. Gencay, Ramazan & Selcuk, Faruk, 2004. "Extreme value theory and Value-at-Risk: Relative performance in emerging markets," International Journal of Forecasting, Elsevier, vol. 20(2), pages 287-303.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
    13. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    14. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    15. Nunzio Cappuccio & Diego Lubian & Davide Raggi, 2006. "Investigating asymmetry in US stock market indexes: evidence from a stochastic volatility model," Applied Financial Economics, Taylor & Francis Journals, vol. 16(6), pages 479-490.
    16. Belaire-Franch Jorge & Peiro Amado, 2003. "Conditional and Unconditional Asymmetry in U.S. Macroeconomic Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(1), pages 1-19, April.
    17. Markku Lanne & Pentti Saikkonen, 2005. "Modeling Conditional Skewness in Stock Returns," Economics Working Papers ECO2005/14, European University Institute.
    18. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    19. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    20. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 10.
    21. Anders Wilhelmsson, 2009. "Value at Risk with time varying variance, skewness and kurtosis--the NIG-ACD model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 82-104, 03.
    22. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    23. Sajjad Rasoul & Coakley Jerry & Nankervis John C, 2008. "Markov-Switching GARCH Modelling of Value-at-Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-31, September.
    24. Huang Dashan & Yu Baimin & Lu Zudi & Fabozzi Frank J. & Focardi Sergio & Fukushima Masao, 2010. "Index-Exciting CAViaR: A New Empirical Time-Varying Risk Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:20:y:2011:i:4:p:487-506. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.