IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v14y2010i2n1.html
   My bibliography  Save this article

Index-Exciting CAViaR: A New Empirical Time-Varying Risk Model

Author

Listed:
  • Huang Dashan

    (Washington University in St. Louis)

  • Yu Baimin

    (University of International Business and Economics)

  • Lu Zudi

    (The University of Adelaide)

  • Fabozzi Frank J.

    (Yale School of Management)

  • Focardi Sergio

    (EDHEC Business School)

  • Fukushima Masao

    (Kyoto University)

Abstract

Instead of assuming the distribution of return series, Engle and Manganelli (2004) propose a new Value-at-Risk (VaR) modeling approach, Conditional Autoregressive Value-at-Risk (CAViaR), to directly compute the quantile of an individual asset's returns which performs better in many cases than those that invert a return distribution. In this paper we explore more flexible CAViaR models that allow VaR prediction to depend upon a richer information set involving returns on an index. Specifically, we formulate a time-varying CAViaR model whose parameters vary according to the evolution of the index. The empirical evidence reported in this paper suggests that our time-varying CAViaR models can do a better job for VaR prediction when there are spillover effects from one market or market segment to other markets or market segments.

Suggested Citation

  • Huang Dashan & Yu Baimin & Lu Zudi & Fabozzi Frank J. & Focardi Sergio & Fukushima Masao, 2010. "Index-Exciting CAViaR: A New Empirical Time-Varying Risk Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-26, March.
  • Handle: RePEc:bpj:sndecm:v:14:y:2010:i:2:n:1
    DOI: 10.2202/1558-3708.1805
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1805
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    2. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
    3. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    4. Ming-Yuan Leon Li & Hsiou-wei William Lin, 2004. "Estimating value-at-risk via Markov switching ARCH models - an empirical study on stock index returns," Applied Economics Letters, Taylor & Francis Journals, vol. 11(11), pages 679-691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Grigoletto & Francesco Lisi, 2011. "Practical implications of higher moments in risk management," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(4), pages 487-506, November.
    2. Richard Gerlach & Zudi Lu & Hai Huang, 2013. "Exponentially Smoothing the Skewed Laplace Distribution for Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 534-550, September.
    3. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    4. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    2. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    3. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    4. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    5. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    6. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    7. Ahmed Ali & Granberg Mark & Troster Victor & Uddin Gazi Salah, 2022. "Asymmetric dynamics between uncertainty and unemployment flows in the United States," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 155-172, February.
    8. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    10. Alex Yi-Hou Huang & Tsung-Wei Tseng, 2009. "Forecast of value at risk for equity indices: an analysis from developed and emerging markets," Journal of Risk Finance, Emerald Group Publishing, vol. 10(4), pages 393-409, August.
    11. Abdul Hakim, 2009. "Forcasting portofolio value-at-risk for international stocks, bonds, and foreign exchange emerging market evidence," Economic Journal of Emerging Markets, Universitas Islam Indonesia, vol. 1(1), pages 13-26, April.
    12. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    13. Yuru Sun & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Gael M. Martin, 2023. "Optimal probabilistic forecasts for risk management," Papers 2303.01651, arXiv.org.
    14. Alejandro Bernales & Diether W. Beuermann & Gonzalo Cortazar, 2014. "Thinly traded securities and risk management," Estudios de Economia, University of Chile, Department of Economics, vol. 41(1 Year 20), pages 5-48, June.
    15. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    16. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    17. Lang, Chunlin & Hu, Yang & Corbet, Shaen & Hou, Yang (Greg), 2024. "Tail risk connectedness in G7 stock markets: Understanding the impact of COVID-19 and related variants," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    18. Wang, Jying-Nan & Du, Jiangze & Hsu, Yuan-Teng, 2018. "Measuring long-term tail risk: Evaluating the performance of the square-root-of-time rule," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 120-138.
    19. Bauwens Luc & Storti Giuseppe, 2009. "A Component GARCH Model with Time Varying Weights," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
    20. Abad, Pilar & Benito, Sonia, 2013. "A detailed comparison of value at risk estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 258-276.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:14:y:2010:i:2:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.