IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i3p1103-1131.html
   My bibliography  Save this article

Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity

Author

Listed:
  • Cathy Chen

    ()

  • Richard Gerlach

Abstract

Compared to the conditional mean or median, conditional quantiles provide a more comprehensive picture of a variable in various scenarios. A semi-parametric quantile estimation method for a double threshold auto-regression with exogenous regressors and heteroskedasticity is considered, allowing representation of both asymmetry and volatility clustering. As such, GARCH dynamics with nonlinearity are added to a nonlinear time series regression model. An adaptive Bayesian Markov chain Monte Carlo scheme, exploiting the link between the quantile loss function and the asymmetric-Laplace distribution, is employed for estimation and inference, simultaneously estimating and accounting for nonlinear heteroskedasticity plus unknown threshold limits and delay lags. A simulation study illustrates sampling properties of the method. Two data sets are considered in the empirical applications: modelling daily maximum temperatures in Melbourne, Australia; and exploring dynamic linkages between financial markets in the US and Hong Kong. Copyright Springer-Verlag 2013

Suggested Citation

  • Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:3:p:1103-1131
    DOI: 10.1007/s00180-012-0346-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0346-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    2. Gerlach, Richard H. & Chen, Cathy W. S. & Chan, Nancy Y. C., 2011. "Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 481-492.
    3. Chen, Cathy W.S. & Gerlach, Richard & Wei, D.C.M., 2009. "Bayesian causal effects in quantiles: Accounting for heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1993-2007, April.
    4. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, December.
    7. Roger Koenker & Zhijie Xiao, 2004. "Unit Root Quantile Autoregression Inference," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 775-787, January.
    8. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    11. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    12. Yuzhi Cai, 2010. "Forecasting for quantile self-exciting threshold autoregressive time series models," Biometrika, Biometrika Trust, vol. 97(1), pages 199-208.
    13. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    14. Brooks, Chris, 2001. "A Double-Threshold GARCH Model for the French Franc/Deutschmark Exchange Rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 135-143, March.
    15. Eun, Cheol S. & Shim, Sangdal, 1989. "International Transmission of Stock Market Movements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(02), pages 241-256, June.
    16. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
    17. Koenker, Roger, 2000. "Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics," Journal of Econometrics, Elsevier, vol. 95(2), pages 347-374, April.
    18. Antonio F. Galvao Jr. & Gabriel Montesā€Rojas & Jose Olmo, 2011. "Threshold quantile autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 253-267, May.
    19. Zhijie Xiao & Roger Koenker, 2009. "Conditional Quantile Estimation for GARCH Models," Boston College Working Papers in Economics 725, Boston College Department of Economics.
    20. Karolyi, G Andrew, 1995. "A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: The Case of the United States and Canada," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 11-25, January.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Nassiri & Ignace Loris, 2014. "An efficient algorithm for structured sparse quantile regression," Computational Statistics, Springer, vol. 29(5), pages 1321-1343, October.
    2. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    3. Cathy W. S. Chen & Muyi Li & Nga T. H. Nguyen & Songsak Sriboonchitta, 2017. "On Asymmetric Market Model with Heteroskedasticity and Quantile Regression," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 155-174, January.
    4. Cathy W.S. Chen & Mike K.P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 96-124, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:3:p:1103-1131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.