IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v16y2006i6p479-490.html
   My bibliography  Save this article

Investigating asymmetry in US stock market indexes: evidence from a stochastic volatility model

Author

Listed:
  • Nunzio Cappuccio
  • Diego Lubian
  • Davide Raggi

Abstract

This study provides empirical evidence on asymmetry in financial returns using a simple stochastic volatility model which allows a parsimonious yet flexible treatment of both skewness and heavy tails in the conditional distribution of returns. In particular, it is assumed that returns have a Skew-GED conditional distribution. Inference is conducted under a Bayesian framework using Markov Chain Monte Carlo methods for estimating the properties of the posterior distributions of the parameters. One is also able to perform some specification testing via Bayes factors. The data set consists of daily and weekly returns on the DJ30, S&P500 and Nasdaq US stock market indexes. The estimation results are consistent with the presence of substantial asymmetry and heavy tails in the distribution of US stock market indexes.

Suggested Citation

  • Nunzio Cappuccio & Diego Lubian & Davide Raggi, 2006. "Investigating asymmetry in US stock market indexes: evidence from a stochastic volatility model," Applied Financial Economics, Taylor & Francis Journals, vol. 16(6), pages 479-490.
  • Handle: RePEc:taf:apfiec:v:16:y:2006:i:6:p:479-490
    DOI: 10.1080/09603100500397179
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603100500397179
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.S. Forbes & G.M. Martin & J. Wright, 2002. "Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices," Monash Econometrics and Business Statistics Working Papers 2/02, Monash University, Department of Econometrics and Business Statistics.
    2. Neil Shephard & Siddhartha Chib, 1998. "Markov Chain Monte Carlo methods for Generalized Stochastic Volatility Models," Economics Series Working Papers 1998-W21, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Grigoletto & Francesco Lisi, 2011. "Practical implications of higher moments in risk management," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(4), pages 487-506, November.
    2. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    3. Patricia Lengua & Cristian Bayes & Gabriel Rodríguez, 2015. " A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:16:y:2006:i:6:p:479-490. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.