IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1553.html

A General Closed Form Option Pricing Formula

Author

Listed:
  • Ciprian Necula

    (University of Zurich and Bucharest University of Economic Studies)

  • Gabriel G. Drimus

    (Institute of Banking and Finance)

  • Walter Farkas

    (University of Zurich, Ecole Polytechnique Fédérale de Lausanne, Swiss Finance Institute, and ETH Zürich)

Abstract

A new method to retrieve the risk-neutral probability measure from observed option prices is developed and a closed form pricing formula for European options is obtained by employing a modified Gram-Charlier series expansion, known as the Gauss-Hermite expansion. This expansion converges for fat-tailed distributions commonly encountered in the study of financial returns. The expansion coefficients can be calibrated from observed option prices and can also be computed, for example, in models with the probability density function or the characteristic function known in closed form. We investigate the properties of the new option pricing model by calibrating it to both real-world and simulated option prices and find that the resulting implied volatility curves provide an accurate approximation for a wide range of strike prices. Based on an extensive empirical study, we conclude that the new approximation method outperforms other methods both in-sample and out-of-sample.

Suggested Citation

  • Ciprian Necula & Gabriel G. Drimus & Walter Farkas, 2015. "A General Closed Form Option Pricing Formula," Swiss Finance Institute Research Paper Series 15-53, Swiss Finance Institute, revised Mar 2016.
  • Handle: RePEc:chf:rpseri:rp1553
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=2210359
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    2. Julien Hok & Tat Lung Chan, 2016. "Option pricing with Legendre polynomials," Papers 1610.03086, arXiv.org, revised Mar 2017.
    3. Gangadhar Nayak & Subhranshu Sekhar Tripathy & Agbotiname Lucky Imoize & Chun-Ta Li, 2024. "Application of Extended Normal Distribution in Option Price Sensitivities," Mathematics, MDPI, vol. 12(15), pages 1-18, July.
    4. Damien Ackerer & Damir Filipovic & Sergio Pulido, 2017. "The Jacobi Stochastic Volatility Model," Working Papers hal-01338330, HAL.
    5. Laurent Devineau & Pierre-Edouard Arrouy & Paul Bonnefoy & Alexandre Boumezoued, 2017. "Fast calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion," Working Papers hal-01521491, HAL.
    6. Inés Jiménez & Andrés Mora-Valencia & Javier Perote, 2022. "Dynamic selection of Gram–Charlier expansions with risk targets: an application to cryptocurrencies," Risk Management, Palgrave Macmillan, vol. 24(1), pages 81-99, March.
    7. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    8. Damien Ackerer & Damir Filipovi'c & Sergio Pulido, 2016. "The Jacobi Stochastic Volatility Model," Papers 1605.07099, arXiv.org, revised Mar 2018.
    9. He, Xin-Jiang & Pasricha, Puneet & Lin, Sha, 2024. "Analytically pricing European options in dynamic markets: Incorporating liquidity variations and economic cycles," Economic Modelling, Elsevier, vol. 139(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.