IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v170y2025ics0378426624002577.html
   My bibliography  Save this article

Good idiosyncratic volatility, bad idiosyncratic volatility, and the cross-section of stock returns

Author

Listed:
  • Liu, Yunting
  • Zhu, Yandi

Abstract

We decompose the idiosyncratic volatility of stock returns into “good” and “bad” volatility components, which are associated with positive and negative returns, respectively. Using firm characteristics, we estimate a cross-sectional model for the expected idiosyncratic good minus bad volatility (EIGMB). The EIGMB outperforms expected idiosyncratic skewness (EISKEW) and standard time-series models in capturing conditional idiosyncratic return asymmetry. EIGMB is negatively and significantly associated with future stock returns, even after controlling for EIKSEW and exposure to systematic-skewness-related factors. Separating the role each specific characteristic plays in driving the predictive power of EIGMB for returns, we find that return on equity and momentum are two important elements of variation in EIGMB.

Suggested Citation

  • Liu, Yunting & Zhu, Yandi, 2025. "Good idiosyncratic volatility, bad idiosyncratic volatility, and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:jbfina:v:170:y:2025:i:c:s0378426624002577
    DOI: 10.1016/j.jbankfin.2024.107343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426624002577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2024.107343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    2. Markus K. Brunnermeier & Jonathan A. Parker, 2005. "Optimal Expectations," American Economic Review, American Economic Association, vol. 95(4), pages 1092-1118, September.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    4. Harrison Hong & Jeremy C. Stein, 2003. "Differences of Opinion, Short-Sales Constraints, and Market Crashes," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 487-525.
    5. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    6. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    7. Huang, Tao & Li, Junye, 2019. "Option-Implied variance asymmetry and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 21-36.
    8. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    9. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    10. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    11. Brian Boyer & Todd Mitton & Keith Vorkink, 2010. "Expected Idiosyncratic Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 169-202, January.
    12. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    14. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    15. Gul, Faruk, 1991. "A Theory of Disappointment Aversion," Econometrica, Econometric Society, vol. 59(3), pages 667-686, May.
    16. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    17. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. Trigeorgis, Lenos & Lambertides, Neophytos, 2014. "The Role of Growth Options in Explaining Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 749-771, June.
    20. Bruno Feunou & Mohammad R Jahan-Parvar & Cédric Okou, 2018. "Downside Variance Risk Premium," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 341-383.
    21. Bali, Turan G. & Del Viva, Luca & Lambertides, Neophytos & Trigeorgis, Lenos, 2020. "Growth Options and Related Stock Market Anomalies: Profitability, Distress, Lotteryness, and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(7), pages 2150-2180, November.
    22. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    23. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    24. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    25. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    26. Langlois, Hugues, 2020. "Measuring skewness premia," Journal of Financial Economics, Elsevier, vol. 135(2), pages 399-424.
    27. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    28. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    29. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2016. "Which parametric model for conditional skewness?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1237-1271, October.
    30. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    31. Novy-Marx, Robert, 2013. "The other side of value: The gross profitability premium," Journal of Financial Economics, Elsevier, vol. 108(1), pages 1-28.
    32. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    33. Barinov, Alexander, 2018. "Stocks with extreme past returns: Lotteries or insurance?," Journal of Financial Economics, Elsevier, vol. 129(3), pages 458-478.
    34. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    35. Martin Lettau & Markus Pelger, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," Review of Finance, European Finance Association, vol. 33(5), pages 2274-2325.
    36. Feunou, Bruno & Okou, Cédric, 2019. "Good Volatility, Bad Volatility, and Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(2), pages 695-727, April.
    37. Christopher W. Anderson & Luis Garcia‐Feijóo, 2006. "Empirical Evidence on Capital Investment, Growth Options, and Security Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 171-194, February.
    38. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    39. Geert Bekaert & Eric Engstrom, 2017. "Asset Return Dynamics under Habits and Bad Environment-Good Environment Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 713-760.
    40. Bollerslev, Tim & Li, Sophia Zhengzi & Zhao, Bingzhi, 2020. "Good Volatility, Bad Volatility, and the Cross Section of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 751-781, May.
    41. Del Viva, Luca & Kasanen, Eero & Trigeorgis, Lenos, 2017. "Real Options, Idiosyncratic Skewness, and Diversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(1), pages 215-241, February.
    42. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, March.
    3. Byun, Suk-Joon & Kim, Da-Hea, 2016. "Gambling preference and individual equity option returns," Journal of Financial Economics, Elsevier, vol. 122(1), pages 155-174.
    4. Lin, Chaonan & Chen, Hong-Yi & Ko, Kuan-Cheng & Yang, Nien-Tzu, 2021. "Time-dependent lottery preference and the cross-section of stock returns," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 272-294.
    5. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    6. Weber, Martin & Jacobs, Heiko & Regele, Tobias, 2015. "Expected Skewness and Momentum," CEPR Discussion Papers 10601, C.E.P.R. Discussion Papers.
    7. Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam & Cakici, Nusret, 2025. "A factor model for the cross-section of country equity risk premia," Journal of Banking & Finance, Elsevier, vol. 171(C).
    8. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    9. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    10. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
    11. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    12. Bali, Turan G. & Brown, Stephen J. & Tang, Yi, 2017. "Is economic uncertainty priced in the cross-section of stock returns?," Journal of Financial Economics, Elsevier, vol. 126(3), pages 471-489.
    13. Sak, Halis & Huang, Tao & Chng, Michael T., 2024. "Exploring the factor zoo with a machine-learning portfolio," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    14. Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2023. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 126151, London School of Economics and Political Science, LSE Library.
    15. Zhu, Zhaobo & Harrison, DavidM. & Seiler, MichaelJ., 2020. "Preference for lottery features in real estate investment trusts," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 599-613.
    16. Zhong, Angel & Gray, Philip, 2016. "The MAX effect: An exploration of risk and mispricing explanations," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 76-90.
    17. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    18. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "Realized semibetas: Disentangling “good” and “bad” downside risks," Journal of Financial Economics, Elsevier, vol. 144(1), pages 227-246.
    19. Luca Del Viva & S. P. Kothari & Neophytos Lambertides & Lenos Trigeorgis, 2021. "Asymmetric Returns and the Economic Content of Accruals and Investment," Management Science, INFORMS, vol. 67(6), pages 3921-3942, June.
    20. Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Predicting the distributions of stock returns around the globe in the era of big data and learning," Papers 2408.07497, arXiv.org.

    More about this item

    Keywords

    Idiosyncratic skewness; Good volatility; Bad volatility; Cross-sectional stock returns; Risk factors; Growth options;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:170:y:2025:i:c:s0378426624002577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.