IDEAS home Printed from
   My bibliography  Save this article

Beyond Stochastic Volatility and Jumps in Returns and Volatility


  • Garland Durham
  • Yang-Ho Park


While a great deal of attention has been focused on stochastic volatility in stock returns, there is strong evidence suggesting that return distributions have time-varying skewness and kurtosis as well. Under the risk-neutral measure, for example, this can be observed from variation across time in the shape of Black--Scholes implied volatility smiles. This article investigates model characteristics that are consistent with variation in the shape of return distributions using a stochastic volatility model with a regime-switching feature to allow for random changes in the parameters governing volatility of volatility, leverage effect, and jump intensity. The analysis consists of two steps. First, the models are estimated using only information from observed returns and option-implied volatility. Standard model assessment tools indicate a strong preference in favor of the proposed models. Since the information from option-implied skewness and kurtosis is not used in fitting the models, it is available for diagnostic purposes. In the second step of the analysis, regressions of option-implied skewness and kurtosis on the filtered state variables (and some controls) suggest that the models have strong explanatory power for these characteristics.

Suggested Citation

  • Garland Durham & Yang-Ho Park, 2013. "Beyond Stochastic Volatility and Jumps in Returns and Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 107-121, January.
  • Handle: RePEc:taf:jnlbes:v:31:y:2013:i:1:p:107-121 DOI: 10.1080/07350015.2013.747800

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Working Paper 1134, Federal Reserve Bank of Cleveland.
    2. Peter N. Ireland, 2007. "Changes in the Federal Reserve's Inflation Target: Causes and Consequences," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(8), pages 1851-1882, December.
    3. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 763-789.
    4. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    5. Todd E. Clark & Troy A. Davig, 2008. "An empirical assessment of the relationships among inflation and short- and long-term expectations," Research Working Paper RWP 08-05, Federal Reserve Bank of Kansas City.
    6. John C. Williams, 2009. "The risk of deflation," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue mar27.
    7. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    8. John Geweke, 2010. "Complete and Incomplete Econometric Models," Economics Books, Princeton University Press, edition 1, number 9218.
    9. Koop, Gary & Potter, Simon M., 2011. "Time varying VARs with inequality restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 1126-1138, July.
    10. Chan, Joshua & Strachan, Rodney, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," MPRA Paper 39360, University Library of Munich, Germany.
    11. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    12. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    13. Timothy Cogley & Argia M. Sbordone, 2008. "Trend Inflation, Indexation, and Inflation Persistence in the New Keynesian Phillips Curve," American Economic Review, American Economic Association, vol. 98(5), pages 2101-2126, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:jbfina:v:83:y:2017:i:c:p:85-103 is not listed on IDEAS
    2. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    3. Reyes-García, Nallely Jacqueline & Venegas-Martínez, Francisco & Cruz-Aké, Salvador, 2018. "Un análisis comparativo entre GARCH-M, EGARCH y PJ-RS-EV para modelar la volatilidad de Índice de precios y cotizaciones de la Bolsa Mexicana de Valores
      [A Comparative Analysis among GARCH-M, EGARC
      ," MPRA Paper 84304, University Library of Munich, Germany.
    4. Andrey Itkin, 2015. "LSV models with stochastic interest rates and correlated jumps," Papers 1511.01460,, revised Nov 2016.
    5. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    6. Marcos Escobar & Daniela Neykova & Rudi Zagst, 2015. "Portfolio Optimization In Affine Models With Markov Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-46.
    7. Jahan-Parvar, Mohammad R. & Mohammadi, Hassan, 2013. "Risk and return in the Tehran stock exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 238-256.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:31:y:2013:i:1:p:107-121. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.