IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

LSV models with stochastic interest rates and correlated jumps

Listed author(s):
  • Andrey Itkin
Registered author(s):

    Pricing and hedging exotic options using local stochastic volatility models drew a serious attention within the last decade, and nowadays became almost a standard approach to this problem. In this paper we show how this framework could be extended by adding to the model stochastic interest rates and correlated jumps in all three components. We also propose a new fully implicit modification of the popular Hundsdorfer and Verwer and Modified Craig-Sneyd finite-difference schemes which provides second order approximation in space and time, is unconditionally stable and preserves positivity of the solution, while still has a linear complexity in the number of grid nodes.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1511.01460
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1511.01460.

    as
    in new window

    Length:
    Date of creation: Nov 2015
    Date of revision: Nov 2016
    Handle: RePEc:arx:papers:1511.01460
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    2. Ako Doffou & Jimmy E. Hilliard, 2001. "Pricing Currency Options Under Stochastic Interest Rates And Jump-Diffusion Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(4), pages 565-585, December.
    3. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    4. Michael Johannes, 2004. "The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models," Journal of Finance, American Finance Association, vol. 59(1), pages 227-260, 02.
    5. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    6. Samuli Ikonen & Jari Toivanen, 2007. "Componentwise Splitting Methods For Pricing American Options Under Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 331-361.
    7. Andrey Itkin, 2013. "Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials," Papers 1304.3159, arXiv.org, revised Apr 2014.
    8. Carl Chiarella & Boda Kang, 2009. "The Evaluation of American Compound Option Prices Under Stochastic Volatility Using the Sparse Grid Approach," Research Paper Series 245, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Svetlana Boyarchenko & Sergei Levendorskiń¨, 2013. "American Options in the Heston Model with Stochastic Interest Rate and Its Generalizations," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(1), pages 26-49, March.
    10. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    11. Andrey Itkin, 2014. "Splitting and Matrix Exponential approach for jump-diffusion models with Inverse Normal Gaussian, Hyperbolic and Meixner jumps," Papers 1405.6111, arXiv.org, revised May 2014.
    12. Andrey Itkin, 2013. "New solvable stochastic volatility models for pricing volatility derivatives," Review of Derivatives Research, Springer, vol. 16(2), pages 111-134, July.
    13. Andrey Itkin, 2014. "High-Order Splitting Methods for Forward PDEs and PIDEs," Papers 1403.1804, arXiv.org.
    14. Garland Durham & Yang-Ho Park, 2013. "Beyond Stochastic Volatility and Jumps in Returns and Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 107-121, January.
    15. Andrey Itkin, 2015. "HIGH ORDER SPLITTING METHODS FOR FORWARD PDEs AND PIDEs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-24.
    16. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    17. Doffou, Ako & Hilliard, Jimmy E, 2001. "Pricing Currency Options under Stochastic Interest Rates and Jump-Diffusion Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(4), pages 565-585, Winter.
    18. Igor Halperin & Andrey Itkin, 2013. "USLV: Unspanned Stochastic Local Volatility Model," Papers 1301.4442, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1511.01460. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.