IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.07225.html
   My bibliography  Save this paper

Numerical stability of a hybrid method for pricing options

Author

Listed:
  • Maya Briani
  • Lucia Caramellino
  • Giulia Terenzi
  • Antonino Zanette

Abstract

We develop and study stability properties of a hybrid approximation of functionals of the Bates jump model with stochastic interest rate that uses a tree method in the direction of the volatility and the interest rate and a finite-difference approach in order to handle the underlying asset price process. We also propose hybrid simulations for the model, following a binomial tree in the direction of both the volatility and the interest rate, and a space-continuous approximation for the underlying asset price process coming from a Euler-Maruyama type scheme. We show that our methods allow to obtain efficient and accurate European and American option prices. Numerical experiments are provided, and show the reliability and the efficiency of the algorithms.

Suggested Citation

  • Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1603.07225
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.07225
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    3. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    4. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    8. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    11. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    12. Elisa Appolloni & Lucia Caramellino & Antonino Zanette, 2015. "A robust tree method for pricing American options with CIR stochastic interest rate," Post-Print hal-00916441, HAL.
    13. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    14. Carl Chiarella & Boda Kang & Gunter H. Meyer, 2010. "The Evaluation Of Barrier Option Prices Under Stochastic Volatility," Research Paper Series 266, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludovic Gouden`ege & Andrea Molent & Xiao Wei & Antonino Zanette, 2024. "Enhancing Valuation of Variable Annuities in L\'evy Models with Stochastic Interest Rate," Papers 2404.07658, arXiv.org.
    2. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Edoardo Lombardo, 2025. "Some PDE results in Heston model with applications," Papers 2504.19859, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    2. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019, January-A.
    4. Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
    5. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    6. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    7. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    10. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    11. Roberto Andreotti Bodra & Afonso De Campos Pint, 2014. "Modelo De Volatilidade Estocástica Com Saltos Aplicado A Commodities Agrícolas," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 142, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    12. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2025-2054, December.
    13. Jamal Amani Rad & Kourosh Parand, 2014. "Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method," Papers 1412.6064, arXiv.org.
    14. Ciprian Necula, 2008. "Asset Pricing in a Two-Country Discontinuous General Equilibrium Model," Advances in Economic and Financial Research - DOFIN Working Paper Series 24, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    15. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    16. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    18. Kuldip Singh Patel & Mani Mehra, 2018. "Fourth order compact scheme for option pricing under Merton and Kou jump-diffusion models," Papers 1804.07534, arXiv.org.
    19. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    20. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.07225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.