IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/266.html
   My bibliography  Save this paper

The Evaluation Of Barrier Option Prices Under Stochastic Volatility

Author

Abstract

This paperc onsiders the problem o fnumerically evaluating barrier option prices when the dynamics of the underlying are driven by stochastic volatility following the square root process of Heston (1993). We develop a method of lines approach to evaluate the price as well as the delta and gamma of the option. The method is able to effciently handle bothc ontinuously monitored and discretely monitored barrier options and can also handle barrier options with early exercise features. In the latter case, we can calculate the early exercise boundary of an American barrier option in both the continuously and discretely monitored cases.

Suggested Citation

  • Carl Chiarella & Boda Kang & Gunter H. Meyer, 2010. "The Evaluation Of Barrier Option Prices Under Stochastic Volatility," Research Paper Series 266, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:266
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp266.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    2. Hoi Ying Wong & Yue-Kuen Kwok, 2003. "Multi-asset barrier options and occupation time derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(3), pages 245-266.
    3. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    4. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    5. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    6. Carl Chiarella & Boda Kang, 2009. "The Evaluation of American Compound Option Prices Under Stochastic Volatility Using the Sparse Grid Approach," Research Paper Series 245, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jerim & Kim, Jeongsim & Joo Yoo, Hyun & Kim, Bara, 2015. "Pricing external barrier options in a regime-switching model," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 123-143.
    2. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    3. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    4. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid approach for the implementation of the Heston model," Papers 1307.7178, arXiv.org, revised Sep 2017.
    5. Robert J. Elliott & Katsumasa Nishide & Carlton‐James U. Osakwe, 2016. "Heston‐Type Stochastic Volatility with a Markov Switching Regime," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(9), pages 902-919, September.
    6. Ziveyi, Jonathan & Blackburn, Craig & Sherris, Michael, 2013. "Pricing European options on deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 300-311.
    7. repec:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2559-3 is not listed on IDEAS
    8. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12.
    9. Ballestra, Luca Vincenzo & Pacelli, Graziella, 2013. "Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1142-1167.
    10. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "On a hybrid method using trees and finite-differences for pricing options in complex models," Papers 1603.07225, arXiv.org, revised May 2017.
    11. Susanne Griebsch & Kay Pilz, 2012. "A Stochastic Approach to the Valuation of Barrier Options in Heston's Stochastic Volatility Model," Research Paper Series 309, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Keywords

    barrier option; stochastic volatility; continuously monitored; discretely monitored; free boundary problem; method of lines; Monte Carlo simulation;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:266. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.