IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i11p1725-1740.html
   My bibliography  Save this article

Smile and default: the role of stochastic volatility and interest rates in counterparty credit risk

Author

Listed:
  • S. Simaitis
  • C. S. L. de Graaf
  • N. Hari
  • D. Kandhai

Abstract

In this research, we investigate the impact of stochastic volatility and interest rates on counterparty credit risk (CCR) for FX derivatives. To achieve this we analyse two real-life cases in which the market conditions are different, namely during the 2008 credit crisis where risks are high and a period after the crisis in 2014, where volatility levels are low. The Heston model is extended by adding two Hull–White components which are calibrated to fit the EURUSD volatility surfaces. We then present future exposure profiles and credit value adjustments (CVAs) for plain vanilla cross-currency swaps (CCYS), barrier and American options and compare the different results when Heston-Hull–White-Hull–White or Black–Scholes dynamics are assumed. It is observed that the stochastic volatility has a significant impact on all the derivatives. For CCYS, some of the impact can be reduced by allowing for time-dependent variance. We further confirmed that Barrier options exposure and CVA is highly sensitive to volatility dynamics and that American options’ risk dynamics are significantly affected by the uncertainty in the interest rates.

Suggested Citation

  • S. Simaitis & C. S. L. de Graaf & N. Hari & D. Kandhai, 2016. "Smile and default: the role of stochastic volatility and interest rates in counterparty credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1725-1740, November.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:11:p:1725-1740
    DOI: 10.1080/14697688.2016.1176240
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1176240
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1176240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Rehez Ahlip & Marek Rutkowski, 2013. "Pricing of foreign exchange options under the Heston stochastic volatility model and CIR interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 955-966, May.
    3. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    4. Carl Chiarella & Boda Kang & Gunter H. Meyer, 2010. "The Evaluation Of Barrier Option Prices Under Stochastic Volatility," Research Paper Series 266, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Lech Grzelak & Cornelis Oosterlee & Sacha Van Weeren, 2011. "The affine Heston model with correlated Gaussian interest rates for pricing hybrid derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 11(11), pages 1647-1663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lei & Li, Shouwei & Chen, Tingqiang, 2019. "Investor behavior, information disclosure strategy and counterparty credit risk contagion," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 37-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    2. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    4. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    5. Singor, Stefan N. & Grzelak, Lech A. & van Bragt, David D.B. & Oosterlee, Cornelis W., 2013. "Pricing inflation products with stochastic volatility and stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 286-299.
    6. Hideharu Funahashi & Tomohide Higuchi, 2018. "An analytical approximation for single barrier options under stochastic volatility models," Annals of Operations Research, Springer, vol. 266(1), pages 129-157, July.
    7. Hongshan Li & Zhongyi Huang, 2019. "Artificial boundary method for the solution of pricing European options under the Heston model," Papers 1912.00691, arXiv.org.
    8. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    9. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    10. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    11. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    12. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    13. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    14. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    15. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    16. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    17. Eudald Romo & Luis Ortiz-Gracia, 2021. "SWIFT calibration of the Heston model," Papers 2103.01570, arXiv.org.
    18. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    19. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    20. Xie, Jiayi & Zhang, Zhimin, 2020. "Statistical estimation for some dividend problems under the compound Poisson risk model," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 101-115.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:11:p:1725-1740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.