IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.15044.html
   My bibliography  Save this paper

The ATM implied skew in the ADO-Heston model

Author

Listed:
  • Andrey Itkin

Abstract

In this paper similar to [P. Carr, A. Itkin, 2019] we construct another Markovian approximation of the rough Heston-like volatility model - the ADO-Heston model. The characteristic function (CF) of the model is derived under both risk-neutral and real measures which is an unsteady three-dimensional PDE with some coefficients being functions of the time $t$ and the Hurst exponent $H$. To replicate known behavior of the market implied skew we proceed with a wise choice of the market price of risk, and then find a closed form expression for the CF of the log-price and the ATM implied skew. Based on the provided example, we claim that the ADO-Heston model (which is a pure diffusion model but with a stochastic mean-reversion speed of the variance process, or a Markovian approximation of the rough Heston model) is able (approximately) to reproduce the known behavior of the vanilla implied skew at small $T$. We conclude that the behavior of our implied volatility skew curve ${\cal S}(T) \propto a(H) T^{b\cdot (H-1/2)}, \, b = const$, is not exactly same as in rough volatility models since $b \ne 1$, but seems to be close enough for all practical values of $T$. Thus, the proposed Markovian model is able to replicate some properties of the corresponding rough volatility model. Similar analysis is provided for the forward starting options where we found that the ATM implied skew for the forward starting options can blow-up for any $s > t$ when $T \to s$. This result, however, contradicts to the observation of [E. Alos, D.G. Lorite, 2021] that Markovian approximation is not able to catch this behavior, so remains the question on which one is closer to reality.

Suggested Citation

  • Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
  • Handle: RePEc:arx:papers:2309.15044
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.15044
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar El Euch & Mathieu Rosenbaum, 2016. "The characteristic function of rough Heston models," Papers 1609.02108, arXiv.org.
    2. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    3. P. Carr & A. Itkin & D. Muravey, 2022. "Semi-analytical pricing of barrier options in the time-dependent Heston model," Papers 2202.06177, arXiv.org.
    4. Fabio Baschetti & Giacomo Bormetti & Silvia Romagnoli & Pietro Rossi, 2020. "The SINC way: A fast and accurate approach to Fourier pricing," Papers 2009.00557, arXiv.org, revised May 2021.
    5. Bernard Wong & C. C. Heyde, 2006. "On changes of measure in stochastic volatility models," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-13, December.
    6. Alexander Lipton, 2001. "Mathematical Methods for Foreign Exchange:A Financial Engineer's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4694, February.
    7. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    8. Elisa Al`os & Frido Rolloos & Kenichiro Shiraya, 2022. "Forward start volatility swaps in rough volatility models," Papers 2207.10370, arXiv.org.
    9. Daniel Conus & Mackenzie Wildman, 2016. "A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives," Papers 1608.03428, arXiv.org.
    10. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    13. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    14. Jim Gatheral & Radoš Radoičić, 2019. "Rational Approximation Of The Rough Heston Solution," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    15. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    16. Peter Carr & Andrey Itkin, 2019. "ADOL - Markovian approximation of rough lognormal model," Papers 1904.09240, arXiv.org.
    17. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Andrey Itkin, 2019. "ADOL - Markovian approximation of rough lognormal model," Papers 1904.09240, arXiv.org.
    2. Fabio Baschetti & Giacomo Bormetti & Silvia Romagnoli & Pietro Rossi, 2020. "The SINC way: A fast and accurate approach to Fourier pricing," Papers 2009.00557, arXiv.org, revised May 2021.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    4. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
    5. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
    6. Omar El Euch & Mathieu Rosenbaum, 2017. "Perfect hedging in rough Heston models," Papers 1703.05049, arXiv.org.
    7. Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    9. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    10. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Working Papers hal-01890751, HAL.
    11. Jan Posp'iv{s}il & Tom'av{s} Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Papers 1912.06709, arXiv.org.
    12. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    13. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    14. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    15. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    16. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    17. Martin Keller-Ressel & Martin Larsson & Sergio Pulido, 2018. "Affine Rough Models," Papers 1812.08486, arXiv.org.
    18. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    19. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    20. repec:qut:auncer:2013_02 is not listed on IDEAS
    21. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.15044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.