IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02946146.html
   My bibliography  Save this paper

The characteristic function of Gaussian stochastic volatility models: an analytic expression

Author

Listed:
  • Eduardo Abi Jaber

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 UFR27 - Université Paris 1 Panthéon-Sorbonne - UFR Mathématiques & Informatique - UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

Stochastic volatility models based on Gaussian processes, like fractional Brownian motion, are able to reproduce important stylized facts of financial markets such as rich autocorrelation structures, persistence and roughness of sample paths. This is made possible by virtue of the flexibility introduced in the choice of the covariance function of the Gaussian process. The price to pay is that, in general, such models are no longer Markovian nor semimartingales, which limits their practical use. We derive, in two different ways, an explicit analytic expression for the joint characteristic function of the log-price and its integrated variance in general Gaussian stochastic volatility models. Such analytic expression can be approximated by closed form matrix expressions. This opens the door to fast approximation of the joint density and pricing of derivatives on both the stock and its realized variance using Fourier inversion techniques. In the context of rough volatility modeling, our results apply to the (rough) fractional Stein--Stein model and provide the first analytic formulae for option pricing known to date, generalizing that of Stein--Stein, Schöbel-Zhu and a special case of Heston.

Suggested Citation

  • Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
  • Handle: RePEc:hal:journl:hal-02946146
    Note: View the original document on HAL open archive server: https://hal.science/hal-02946146v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02946146v3/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abi Jaber, Eduardo & El Euch, Omar, 2019. "Markovian structure of the Volterra Heston model," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 63-72.
    2. Eduardo Abi Jaber & Enzo Miller & Huy^en Pham, 2020. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Papers 2006.13539, arXiv.org, revised Jan 2021.
    3. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    6. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    7. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra-type processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 407-448, December.
    8. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Post-Print hal-02877569, HAL.
    9. Harms, Philipp & Stefanovits, David, 2019. "Affine representations of fractional processes with applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1185-1228.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Post-Print hal-02412741, HAL.
    12. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    13. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    14. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra type processes," Papers 1907.01917, arXiv.org, revised Sep 2019.
    15. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    16. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2019. "Extreme-strike asymptotics for general Gaussian stochastic volatility models," Annals of Finance, Springer, vol. 15(1), pages 59-101, March.
    17. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    18. Jim Gatheral & Radoš Radoičić, 2019. "Rational Approximation Of The Rough Heston Solution," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    19. Jim Gatheral & Martin Keller-Ressel, 2019. "Affine forward variance models," Finance and Stochastics, Springer, vol. 23(3), pages 501-533, July.
    20. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02412741, HAL.
    21. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    22. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    23. Eduardo Abi Jaber & Omar El Euch, 2019. "Multi-factor approximation of rough volatility models," Post-Print hal-01697117, HAL.
    24. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    25. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02877569, HAL.
    26. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    27. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    28. Eduardo Abi Jaber & Omar El Euch, 2019. "Markovian structure of the Volterra Heston model," Post-Print hal-01716696, HAL.
    29. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    30. Masaaki Fukasawa, 2021. "Volatility has to be rough," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 1-8, January.
    31. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    32. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber & Eyal Neuman & Moritz Voss, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Working Papers hal-04119787, HAL.
    2. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
    3. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    4. Eduardo Abi Jaber & Eyal Neuman & Moritz Vo{ss}, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Papers 2306.05433, arXiv.org, revised Feb 2024.
    5. Peter K. Friz & William Salkeld & Thomas Wagenhofer, 2022. "Weak error estimates for rough volatility models," Papers 2212.01591, arXiv.org, revised Aug 2024.
    6. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    2. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    3. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    5. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    6. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    7. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    8. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    9. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    10. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    11. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    12. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    13. Bondi, Alessandro & Livieri, Giulia & Pulido, Sergio, 2024. "Affine Volterra processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    14. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    15. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    16. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    17. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
    18. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    19. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
    20. Eduardo Abi Jaber & Louis-Amand G'erard, 2024. "Signature volatility models: pricing and hedging with Fourier," Papers 2402.01820, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02946146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.