IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v149y2019icp63-72.html
   My bibliography  Save this article

Markovian structure of the Volterra Heston model

Author

Listed:
  • Abi Jaber, Eduardo
  • El Euch, Omar

Abstract

We characterize the Markovian and affine structure of the Volterra Heston model in terms of an infinite-dimensional adjusted forward process and specify its state space. More precisely, we show that it satisfies a stochastic partial differential equation and displays an exponentially-affine characteristic functional. As an application, we deduce an existence and uniqueness result for a Banach-space valued square-root process and provide its state space. This leads to another representation of the Volterra Heston model together with its Fourier–Laplace transform in terms of this possibly infinite system of affine diffusions.

Suggested Citation

  • Abi Jaber, Eduardo & El Euch, Omar, 2019. "Markovian structure of the Volterra Heston model," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 63-72.
  • Handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:63-72
    DOI: 10.1016/j.spl.2019.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jim Gatheral & Martin Keller-Ressel, 2018. "Affine forward variance models," Papers 1801.06416, arXiv.org, revised Oct 2018.
    2. Philipp Harms & David Stefanovits, 2015. "Affine representations of fractional processes with applications in mathematical finance," Papers 1510.04061, arXiv.org, revised Feb 2018.
    3. Eduardo Abi Jaber & Omar El Euch, 2018. "Multi-factor approximation of rough volatility models," Papers 1801.10359, arXiv.org, revised Apr 2018.
    4. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    5. Eduardo Abi Jaber & Omar El Euch, 2018. "Multi-factor approximation of rough volatility models," Working Papers hal-01697117, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    2. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    4. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    5. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    6. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    7. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra-type processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 407-448, December.
    8. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    9. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    10. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    11. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.
    12. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    13. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    14. Jim Gatheral & Martin Keller-Ressel, 2019. "Affine forward variance models," Finance and Stochastics, Springer, vol. 23(3), pages 501-533, July.
    15. Prömel, David J. & Scheffels, David, 2023. "Stochastic Volterra equations with Hölder diffusion coefficients," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 291-315.
    16. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Keller-Ressel & Martin Larsson & Sergio Pulido, 2018. "Affine Rough Models," Papers 1812.08486, arXiv.org.
    2. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
    3. Eduardo Abi Jaber & Omar El Euch, 2019. "Markovian structure of the Volterra Heston model," Post-Print hal-01716696, HAL.
    4. repec:hal:wpaper:hal-02265210 is not listed on IDEAS
    5. Ryan McCrickerd, 2019. "On spatially irregular ordinary differential equations and a pathwise volatility modelling framework," Papers 1902.01673, arXiv.org, revised Sep 2021.
    6. Jim Gatheral & Radoš Radoičić, 2019. "Rational Approximation Of The Rough Heston Solution," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    7. Eduardo Abi Jaber & Omar El Euch, 2018. "Markovian structure of the Volterra Heston model," Working Papers hal-01716696, HAL.
    8. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
    9. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Working Papers hal-01890751, HAL.
    10. Benjamin James Duthie, 2019. "Portfolio optimisation under rough Heston models," Papers 1909.02972, arXiv.org.
    11. Bingyan Han & Hoi Ying Wong, 2019. "Mean-variance portfolio selection under Volterra Heston model," Papers 1904.12442, arXiv.org, revised Jan 2020.
    12. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    13. Siow Woon Jeng & Adem Kiliçman, 2021. "SPX Calibration of Option Approximations under Rough Heston Model," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    14. Nicole Bauerle & Sascha Desmettre, 2018. "Portfolio Optimization in Fractional and Rough Heston Models," Papers 1809.10716, arXiv.org, revised May 2019.
    15. Bingyan Han & Hoi Ying Wong, 2019. "Merton's portfolio problem under Volterra Heston model," Papers 1905.05371, arXiv.org, revised Nov 2019.
    16. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    17. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    18. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    19. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    20. Carsten H. Chong & Viktor Todorov, 2023. "Asymptotic Expansions for High-Frequency Option Data," Papers 2304.12450, arXiv.org.
    21. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:63-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.