IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2930-d681176.html
   My bibliography  Save this article

On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model

Author

Listed:
  • Siow Woon Jeng

    (Institute for Mathematical Research, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Current address: Faculty of Science and Institute for Mathematical Research, University Putra Malaysia, Serdang 43400, Selangor, Malaysia.
    These authors contributed equally to this work.)

  • Adem Kiliçman

    (Institute for Mathematical Research, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Current address: Faculty of Science and Institute for Mathematical Research, University Putra Malaysia, Serdang 43400, Selangor, Malaysia.
    These authors contributed equally to this work.)

Abstract

The rough Heston model is a form of a stochastic Volterra equation, which was proposed to model stock price volatility. It captures some important qualities that can be observed in the financial market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders. Unlike stochastic differential equation, the stochastic Volterra equation is extremely computationally expensive to simulate. In other words, it is difficult to compute option prices under the rough Heston model by conventional Monte Carlo simulation. In this paper, we prove that Euler’s discretization method for the stochastic Volterra equation with non-Lipschitz diffusion coefficient E [ | V t − V t n | p ] is finitely bounded by an exponential function of t . Furthermore, the weak error | E [ V t − V t n ] | and convergence for the stochastic Volterra equation are proven at the rate of O ( n − H ) . In addition, we propose a mixed Monte Carlo method, using the control variate and multilevel methods. The numerical experiments indicate that the proposed method is capable of achieving a substantial cost-adjusted variance reduction up to 17 times, and it is better than its predecessor individual methods in terms of cost-adjusted performance. Due to the cost-adjusted basis for our numerical experiment, the result also indicates a high possibility of potential use in practice.

Suggested Citation

  • Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2930-:d:681176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard, Alexandre & Tan, Xiaolu & Yang, Fan, 2021. "Discrete-time simulation of Stochastic Volterra equations," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 109-138.
    2. Eduardo Abi Jaber, 2018. "Lifting the Heston model," Papers 1810.04868, arXiv.org, revised Nov 2019.
    3. Omar El Euch & Jim Gatheral & Radov{s} Radoiv{c}i'c & Mathieu Rosenbaum, 2018. "The Zumbach effect under rough Heston," Papers 1809.02098, arXiv.org.
    4. Jim Gatheral & Martin Keller-Ressel, 2018. "Affine forward variance models," Papers 1801.06416, arXiv.org, revised Oct 2018.
    5. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 1995-2013, December.
    6. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    7. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
    8. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    9. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    10. Ryan McCrickerd & Mikko S. Pakkanen, 2018. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1877-1886, November.
    11. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    12. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    13. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    14. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    15. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    16. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    17. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    18. Ryan McCrickerd & Mikko S. Pakkanen, 2017. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Papers 1708.02563, arXiv.org, revised Mar 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    2. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    3. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    4. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    5. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    6. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    7. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    8. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    9. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    10. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    11. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    12. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    13. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
    14. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    15. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    16. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    17. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    18. Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
    19. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org.
    20. Ozan Akdogan, 2019. "Vol-of-vol expansion for (rough) stochastic volatility models," Papers 1910.03245, arXiv.org, revised Dec 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2930-:d:681176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.